{"title":"Multi-objective topology optimization and numerical investigation of heat sinks based on triply periodic minimal surface lattices","authors":"","doi":"10.1016/j.csite.2024.105255","DOIUrl":null,"url":null,"abstract":"<div><div>In thermal management applications, such as heat sinks (HSs) for electronic devices, cellular materials have extensively been employed. In recent years, there has been a growing attention towards employing topology optimization for enhancing hydraulic and heat transfer performance of HSs by optimizing their topology. The utilization of triply periodic minimal surface (TPMS) based structures presents distinctive prospects for customizing the design and performance of HSs. However, their potential remains unexplored in the context of customizing additively manufactured porous optimized HSs. Consequently, there is a need for research aimed at examining their coupled hydraulic and thermal performance. Density mapping approaches are used to build a variable density TPMS-based HSs from the output of topology optimization by applying the TPMS level-set equations that relate relative density and the level-set constant. In this work, a relative density mapping methodology is applied to thermo-fluid optimization problem to design a TPMS-based convective cooling system. An in-house MATLAB code was developed to perform a multi-objective topology optimization. After that, uniform and variable density (mapped from topology optimization results) TPMS-based HSs are analyzed using Star-CCM + CFD software to investigate their hydraulic and heat transfer performance. An experimental setup was established, and the numerical results were validated using uniform TPMS-based heat sinks. Results showed that incorporating TPMS with topology optimization has a great potential in thermal management applications as pressure drop across the heat sink was reduced while maintaining the performance.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012863","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In thermal management applications, such as heat sinks (HSs) for electronic devices, cellular materials have extensively been employed. In recent years, there has been a growing attention towards employing topology optimization for enhancing hydraulic and heat transfer performance of HSs by optimizing their topology. The utilization of triply periodic minimal surface (TPMS) based structures presents distinctive prospects for customizing the design and performance of HSs. However, their potential remains unexplored in the context of customizing additively manufactured porous optimized HSs. Consequently, there is a need for research aimed at examining their coupled hydraulic and thermal performance. Density mapping approaches are used to build a variable density TPMS-based HSs from the output of topology optimization by applying the TPMS level-set equations that relate relative density and the level-set constant. In this work, a relative density mapping methodology is applied to thermo-fluid optimization problem to design a TPMS-based convective cooling system. An in-house MATLAB code was developed to perform a multi-objective topology optimization. After that, uniform and variable density (mapped from topology optimization results) TPMS-based HSs are analyzed using Star-CCM + CFD software to investigate their hydraulic and heat transfer performance. An experimental setup was established, and the numerical results were validated using uniform TPMS-based heat sinks. Results showed that incorporating TPMS with topology optimization has a great potential in thermal management applications as pressure drop across the heat sink was reduced while maintaining the performance.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.