Quantitative spatial visualization of X-ray irradiation via redox reaction by dynamic nuclear polarization magnetic resonance imaging

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2024-10-11 DOI:10.1016/j.freeradbiomed.2024.10.278
{"title":"Quantitative spatial visualization of X-ray irradiation via redox reaction by dynamic nuclear polarization magnetic resonance imaging","authors":"","doi":"10.1016/j.freeradbiomed.2024.10.278","DOIUrl":null,"url":null,"abstract":"<div><div>The dose of X-ray irradiation is commonly measured by point assessment with an ionization chamber dosimeter. However, to achieve spatially accurate delivery of X-ray to avoid the exposure to normal tissues, an accurate imaging method for spatially and quantitatively detecting exposure is required. Herein, we present a novel method to visualize X-ray exposure using low-field dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) with nitroxyl radical tempol as the chemical dosimeter. In this system, gel phantoms containing glutathione (GSH) and the paramagnetic tempol radical were used to monitor the deposited X-ray-irradiation via the redox reaction. The tempol radical level was evaluated by DNP-MRI whose signal intensity was linearly correlated with the radical concentration. The radical level in the presence of GSH decreased in proportion to the dose of X-irradiation deposited. In an imaging experiment simulating clinical radiotherapy, we used a clinical linear accelerator with a radiotherapy planning software to confirm the utility of the exposure imaging. The X-ray exposure and its distribution were clearly visualized on the gel phantom image acquired by DNP-MRI. The results were consistent with those specified in the radiotherapy plan where the intensity of the radiation beam was modulated. This exposure estimation will be useful for determining an accurate irradiation field and reducing off-target exposure in clinical settings<strong>.</strong></div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924009808","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dose of X-ray irradiation is commonly measured by point assessment with an ionization chamber dosimeter. However, to achieve spatially accurate delivery of X-ray to avoid the exposure to normal tissues, an accurate imaging method for spatially and quantitatively detecting exposure is required. Herein, we present a novel method to visualize X-ray exposure using low-field dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) with nitroxyl radical tempol as the chemical dosimeter. In this system, gel phantoms containing glutathione (GSH) and the paramagnetic tempol radical were used to monitor the deposited X-ray-irradiation via the redox reaction. The tempol radical level was evaluated by DNP-MRI whose signal intensity was linearly correlated with the radical concentration. The radical level in the presence of GSH decreased in proportion to the dose of X-irradiation deposited. In an imaging experiment simulating clinical radiotherapy, we used a clinical linear accelerator with a radiotherapy planning software to confirm the utility of the exposure imaging. The X-ray exposure and its distribution were clearly visualized on the gel phantom image acquired by DNP-MRI. The results were consistent with those specified in the radiotherapy plan where the intensity of the radiation beam was modulated. This exposure estimation will be useful for determining an accurate irradiation field and reducing off-target exposure in clinical settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过动态核偏振磁共振成像对氧化还原反应进行 X 射线辐照的空间定量可视化
X 射线照射剂量通常通过电离室剂量计进行点评估测量。然而,要实现 X 射线的空间精确投射,避免对正常组织造成照射,就需要一种精确的成像方法来对照射进行空间和定量检测。在此,我们提出了一种利用低场动态核偏振磁共振成像(DNP-MRI),以硝基自由基 tempol 作为化学剂量计来可视化 X 射线照射的新方法。在该系统中,含有谷胱甘肽(GSH)和顺磁性 tempol 自由基的凝胶模型通过氧化还原反应监测沉积的 X 射线辐照。通过 DNP-MRI 评估 tempol 自由基水平,其信号强度与自由基浓度呈线性相关。在有 GSH 存在的情况下,自由基水平的下降与沉积的 X 射线剂量成正比。在模拟临床放疗的成像实验中,我们使用了一台临床直线加速器和一个放疗计划软件,以证实曝光成像的实用性。在 DNP-MRI 采集的凝胶模型图像上,X 射线照射及其分布情况清晰可见。结果与放射治疗计划中规定的放射束强度调制结果一致。这种照射估算方法将有助于在临床环境中确定准确的照射野和减少脱靶照射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Antioxidant mito-TEMPO prevents the increase in tropomyosin oxidation and mitochondrial calcium accumulation under 7-day rat hindlimb suspension Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling Melatonin ameliorates chronic sleep deprivation against memory encoding vulnerability: Involvement of synapse regulation via the mitochondrial-dependent redox homeostasis-induced autophagy inhibition Quantitative spatial visualization of X-ray irradiation via redox reaction by dynamic nuclear polarization magnetic resonance imaging Development of novel dual-target drugs against visceral leishmaniasis and combinational study with miltefosine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1