Heat sources in wire arc additive manufacturing and their impact on macro-microstructural characteristics and mechanical properties – An overview

Nabeel Ahmed Siddiqui , Muhammad Muzamil , Tariq Jamil , Ghulam Hussain
{"title":"Heat sources in wire arc additive manufacturing and their impact on macro-microstructural characteristics and mechanical properties – An overview","authors":"Nabeel Ahmed Siddiqui ,&nbsp;Muhammad Muzamil ,&nbsp;Tariq Jamil ,&nbsp;Ghulam Hussain","doi":"10.1016/j.smmf.2024.100059","DOIUrl":null,"url":null,"abstract":"<div><div>The layer-by-layer production idea known as Wire Arc Additive Manufacturing (WAAM) is suggested as a viable substitute for conventional subtractive methods because of its ability to produce massive metallic components with a moderate degree of geometric complexity. This technology has garnered attention recently because of its advantages over traditional Additive Manufacturing (AM) procedures, namely its low cost and high deposition rates. This review investigated various electric arc heat inputs and energy sources for the material depositing processes of gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), cold metal transfer (CMT), plasma arc welding (PAW)-based wire arc additive manufacturing systems. This is achieved through the application of a thorough methodology for comprehending the primary process factors and their impact on the final component qualities. In the present review, the macro-microstructure and mechanical behavior were examined with respect to various energy sources and electric arc heat inputs. This review also examines the input elements related to heat on the wire arc additive manufacturing process. It is necessary to describe the factors influencing these features in order to determine the best wire arc additive manufacturing technique in terms of heat input. The principal aim of the review is to investigate the correlation between heat input and the mechanical, microstructural, and macrostructural features of parts deposited using wire arc additive manufacturing technology. The heat input, which is thoroughly examined in this study, is crucial to the stability of the wire arc additive manufacturing process and affects the mechanical characteristics and microstructural development of the parts during the manufacturing process. The review addresses a wide range of materials, including aluminium alloys, copper alloys, steel alloys, nickel alloys, iron alloys, titanium alloys, magnesium alloys, and smart materials, with a focus on their microstructure, macrostructure, and mechanical properties, providing significant insights into their application across many industries.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810224000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The layer-by-layer production idea known as Wire Arc Additive Manufacturing (WAAM) is suggested as a viable substitute for conventional subtractive methods because of its ability to produce massive metallic components with a moderate degree of geometric complexity. This technology has garnered attention recently because of its advantages over traditional Additive Manufacturing (AM) procedures, namely its low cost and high deposition rates. This review investigated various electric arc heat inputs and energy sources for the material depositing processes of gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), cold metal transfer (CMT), plasma arc welding (PAW)-based wire arc additive manufacturing systems. This is achieved through the application of a thorough methodology for comprehending the primary process factors and their impact on the final component qualities. In the present review, the macro-microstructure and mechanical behavior were examined with respect to various energy sources and electric arc heat inputs. This review also examines the input elements related to heat on the wire arc additive manufacturing process. It is necessary to describe the factors influencing these features in order to determine the best wire arc additive manufacturing technique in terms of heat input. The principal aim of the review is to investigate the correlation between heat input and the mechanical, microstructural, and macrostructural features of parts deposited using wire arc additive manufacturing technology. The heat input, which is thoroughly examined in this study, is crucial to the stability of the wire arc additive manufacturing process and affects the mechanical characteristics and microstructural development of the parts during the manufacturing process. The review addresses a wide range of materials, including aluminium alloys, copper alloys, steel alloys, nickel alloys, iron alloys, titanium alloys, magnesium alloys, and smart materials, with a focus on their microstructure, macrostructure, and mechanical properties, providing significant insights into their application across many industries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线弧快速成型制造中的热源及其对宏观微观结构特征和机械性能的影响 - 概述
线弧增材制造(WAAM)的逐层生产理念被认为是传统减材制造方法的可行替代品,因为它能够生产几何复杂程度适中的大型金属部件。与传统的增材制造(AM)工艺相比,该技术具有成本低、沉积率高等优势,因此最近备受关注。本综述研究了基于线弧增材制造系统的气体钨极氩弧焊 (GTAW)、气体金属弧焊 (GMAW)、冷金属转移 (CMT)、等离子弧焊 (PAW) 材料沉积过程中的各种电弧热输入和能源。要做到这一点,必须采用全面的方法来理解主要工艺因素及其对最终部件质量的影响。在本综述中,针对各种能源和电弧热输入,研究了宏观微观结构和机械行为。本综述还研究了线弧快速成型制造工艺中与热量有关的输入要素。为了确定热输入方面的最佳线弧快速成型技术,有必要描述影响这些特征的因素。本综述的主要目的是研究热输入与使用线弧快速成型技术沉积的零件的机械、微观结构和宏观结构特征之间的相关性。本研究深入探讨的热输入对线弧快速成型制造工艺的稳定性至关重要,并在制造过程中影响零件的机械特性和微观结构发展。综述涉及多种材料,包括铝合金、铜合金、钢合金、镍合金、铁合金、钛合金、镁合金和智能材料,重点关注其微观结构、宏观结构和机械性能,为其在多个行业的应用提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unveiling the structure-property relationships of multilayered Helmholtz resonance-based acoustic metamaterials Corrigendum for previously published articles Parametric optimisation for 3D printing β-tricalcium phosphate tissue engineering scaffolds using direct ink writing A comprehensive study on the biodegradability, biocompatibility, and antibacterial properties of additively manufactured PLA-ZnO nanocomposites Heat sources in wire arc additive manufacturing and their impact on macro-microstructural characteristics and mechanical properties – An overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1