{"title":"Interpreting what typical fault signals look like via prototype-matching","authors":"Qian Chen , Xingjian Dong , Zhike Peng","doi":"10.1016/j.aei.2024.102849","DOIUrl":null,"url":null,"abstract":"<div><div>Neural networks, with powerful nonlinear mapping and classification capabilities, are widely applied in mechanical fault diagnosis to ensure safety. However, being typical black-box models, their application is restricted in high-reliability-required scenarios. To understand the classification logic and explain what typical fault signals look like, the prototype matching network (PMN) is proposed by combining the human-inherent prototype-matching with the autoencoder (AE). The PMN matches AE-extracted feature with each prototype and selects the most similar prototype as the prediction result. This novel PMN has three interpreting paths, which explains the classification logic, depicts the typical fault signals and pinpoints the crucial fault-related frequency causing high similarity with matched prototype in model’s view. Conventional diagnosis and domain generalization experiments demonstrate its competitive diagnostic performance and distinguished advantages in representation learning. Besides, the learned typical fault signals (<em>i.e.</em>, sample-level prototypes) showcase the ability for denoising and extracting subtle key features that experts find challenging to capture. This ability broadens human understanding and provides a promising solution to feedback from interpretable research into the knowledge of fault diagnosis.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102849"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147403462400497X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Neural networks, with powerful nonlinear mapping and classification capabilities, are widely applied in mechanical fault diagnosis to ensure safety. However, being typical black-box models, their application is restricted in high-reliability-required scenarios. To understand the classification logic and explain what typical fault signals look like, the prototype matching network (PMN) is proposed by combining the human-inherent prototype-matching with the autoencoder (AE). The PMN matches AE-extracted feature with each prototype and selects the most similar prototype as the prediction result. This novel PMN has three interpreting paths, which explains the classification logic, depicts the typical fault signals and pinpoints the crucial fault-related frequency causing high similarity with matched prototype in model’s view. Conventional diagnosis and domain generalization experiments demonstrate its competitive diagnostic performance and distinguished advantages in representation learning. Besides, the learned typical fault signals (i.e., sample-level prototypes) showcase the ability for denoising and extracting subtle key features that experts find challenging to capture. This ability broadens human understanding and provides a promising solution to feedback from interpretable research into the knowledge of fault diagnosis.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.