A tri-light warning system for hospitalized COVID-19 patients: Credibility-based risk stratification for future pandemic preparedness

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-10-17 DOI:10.1016/j.ejro.2024.100603
Chuanjun Xu , Qinmei Xu , Li Liu , Mu Zhou , Zijian Xing , Zhen Zhou , Danyang Ren , Changsheng Zhou , Longjiang Zhang , Xiao Li , Xianghao Zhan , Olivier Gevaert , Guangming Lu
{"title":"A tri-light warning system for hospitalized COVID-19 patients: Credibility-based risk stratification for future pandemic preparedness","authors":"Chuanjun Xu ,&nbsp;Qinmei Xu ,&nbsp;Li Liu ,&nbsp;Mu Zhou ,&nbsp;Zijian Xing ,&nbsp;Zhen Zhou ,&nbsp;Danyang Ren ,&nbsp;Changsheng Zhou ,&nbsp;Longjiang Zhang ,&nbsp;Xiao Li ,&nbsp;Xianghao Zhan ,&nbsp;Olivier Gevaert ,&nbsp;Guangming Lu","doi":"10.1016/j.ejro.2024.100603","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The novel coronavirus pneumonia (COVID-19) has continually spread and mutated, requiring a patient risk stratification system to optimize medical resources and improve pandemic response. We aimed to develop a conformal prediction-based tri-light warning system for stratifying COVID-19 patients, applicable to both original and emerging variants.</div></div><div><h3>Methods</h3><div>We retrospectively collected data from 3646 patients across multiple centers in China. The dataset was divided into a training set (n = 1451), a validation set (n = 662), an external test set from Huoshenshan Field Hospital (n = 1263), and a specific test set for Delta and Omicron variants (n = 544). The tri-light warning system extracts radiomic features from CT (computed tomography) and integrates clinical records to classify patients into high-risk (red), uncertain-risk (yellow), and low-risk (green) categories. Models were built to predict ICU (intensive care unit) admissions (adverse cases in training/validation/Huoshenshan/variant test sets: n = 39/21/262/11) and were evaluated using AUROC ((area under the receiver operating characteristic curve)) and AUPRC ((area under the precision-recall curve)) metrics.</div></div><div><h3>Results</h3><div>The dataset included 1830 men (50.2 %) and 1816 women (50.8 %), with a median age of 53.7 years (IQR [interquartile range]: 42–65 years). The system demonstrated strong performance under data distribution shifts, with AUROC of 0.89 and AUPRC of 0.42 for original strains, and AUROC of 0.77–0.85 and AUPRC of 0.51–0.60 for variants.</div></div><div><h3>Conclusion</h3><div>The tri-light warning system can enhance pandemic responses by effectively stratifying COVID-19 patients under varying conditions and data shifts.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The novel coronavirus pneumonia (COVID-19) has continually spread and mutated, requiring a patient risk stratification system to optimize medical resources and improve pandemic response. We aimed to develop a conformal prediction-based tri-light warning system for stratifying COVID-19 patients, applicable to both original and emerging variants.

Methods

We retrospectively collected data from 3646 patients across multiple centers in China. The dataset was divided into a training set (n = 1451), a validation set (n = 662), an external test set from Huoshenshan Field Hospital (n = 1263), and a specific test set for Delta and Omicron variants (n = 544). The tri-light warning system extracts radiomic features from CT (computed tomography) and integrates clinical records to classify patients into high-risk (red), uncertain-risk (yellow), and low-risk (green) categories. Models were built to predict ICU (intensive care unit) admissions (adverse cases in training/validation/Huoshenshan/variant test sets: n = 39/21/262/11) and were evaluated using AUROC ((area under the receiver operating characteristic curve)) and AUPRC ((area under the precision-recall curve)) metrics.

Results

The dataset included 1830 men (50.2 %) and 1816 women (50.8 %), with a median age of 53.7 years (IQR [interquartile range]: 42–65 years). The system demonstrated strong performance under data distribution shifts, with AUROC of 0.89 and AUPRC of 0.42 for original strains, and AUROC of 0.77–0.85 and AUPRC of 0.51–0.60 for variants.

Conclusion

The tri-light warning system can enhance pandemic responses by effectively stratifying COVID-19 patients under varying conditions and data shifts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对 COVID-19 住院病人的三光预警系统:基于可信度的风险分层,为未来的大流行病做好准备
目的新型冠状病毒肺炎(COVID-19)不断传播和变异,需要一套患者风险分层系统来优化医疗资源和提高大流行应对能力。我们旨在开发一种基于保形预测的三光预警系统,用于对 COVID-19 患者进行分层,该系统既适用于原始变异株,也适用于新出现的变异株。数据集分为训练集(n = 1451)、验证集(n = 662)、来自霍山野战医院的外部测试集(n = 1263)以及针对Delta和Omicron变异体的特定测试集(n = 544)。三光预警系统从 CT(计算机断层扫描)中提取放射学特征,并整合临床记录,将患者分为高风险(红色)、不确定风险(黄色)和低风险(绿色)类别。建立的模型用于预测 ICU(重症监护室)入院情况(训练/验证/霍山/变异测试集中的不良病例:n = 39/21/262/11),并使用 AUROC(接收者操作特征曲线下面积)和 AUPRC(精确度-召回曲线下面积)指标进行评估。结果数据集包括 1830 名男性(50.2%)和 1816 名女性(50.8%),中位年龄为 53.7 岁(IQR [四分位间范围]:42-65 岁)。该系统在数据分布变化的情况下表现出很强的性能,原始菌株的 AUROC 为 0.89,AUPRC 为 0.42;变异菌株的 AUROC 为 0.77-0.85,AUPRC 为 0.51-0.60。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1