{"title":"Low-loss metasurfaces based on discretized meta-atoms","authors":"Yisheng Gao","doi":"10.1038/s42005-024-01808-1","DOIUrl":null,"url":null,"abstract":"Metasurfaces are established tools for manipulating light and enhancing light-matter interactions. However, the loss of conventional meta-atoms usually limits the performance potential of metasurfaces. In this study, we propose a class of metasurfaces based on discretized meta-atoms able to mitigate the radiative and intrinsic losses. By discretizing meta-atoms, we reduce the loss of metal metasurfaces to levels comparable to dielectric metasurfaces in the short-wavelength infrared region at the surface lattice resonance mode. Furthermore, we propose a coupling model to explain the observed reduction in loss in full agreement with the results obtained from finite-element method. We also reproduce this phenomenon using dielectric metasurface at electric and magnetic resonances in the visible region. Our finding offers valuable insights for the design and application of metasurfaces, while also providing theoretical implications for other resonance fields beyond metasurfaces. Metasurfaces are established tools for manipulating light and enhancing light-matter interactions, but the loss of conventional meta-atoms usually limits the performance potential of metasurfaces. Here, the authors propose a class of metasurfaces based on discretized meta-atoms able to mitigate the radiative and intrinsic losses, as interpreted by their built coupling model.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01808-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01808-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurfaces are established tools for manipulating light and enhancing light-matter interactions. However, the loss of conventional meta-atoms usually limits the performance potential of metasurfaces. In this study, we propose a class of metasurfaces based on discretized meta-atoms able to mitigate the radiative and intrinsic losses. By discretizing meta-atoms, we reduce the loss of metal metasurfaces to levels comparable to dielectric metasurfaces in the short-wavelength infrared region at the surface lattice resonance mode. Furthermore, we propose a coupling model to explain the observed reduction in loss in full agreement with the results obtained from finite-element method. We also reproduce this phenomenon using dielectric metasurface at electric and magnetic resonances in the visible region. Our finding offers valuable insights for the design and application of metasurfaces, while also providing theoretical implications for other resonance fields beyond metasurfaces. Metasurfaces are established tools for manipulating light and enhancing light-matter interactions, but the loss of conventional meta-atoms usually limits the performance potential of metasurfaces. Here, the authors propose a class of metasurfaces based on discretized meta-atoms able to mitigate the radiative and intrinsic losses, as interpreted by their built coupling model.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.