Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H2O2 Evolution via Controllable n → π* Electronic Transition Activation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-17 DOI:10.1002/adma.202412753
Haijian Tong, Jokotadeola Odutola, Junsheng Song, Lu Peng, Nikolai Tkachenko, Markus Antonietti, Christian Mark Pelicano
{"title":"Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H2O2 Evolution via Controllable n → π* Electronic Transition Activation","authors":"Haijian Tong,&nbsp;Jokotadeola Odutola,&nbsp;Junsheng Song,&nbsp;Lu Peng,&nbsp;Nikolai Tkachenko,&nbsp;Markus Antonietti,&nbsp;Christian Mark Pelicano","doi":"10.1002/adma.202412753","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a crucial chemical used in numerous industrial applications, yet its manufacturing relies on the energy-demanding anthraquinone process. Solar-driven synthesis of H<sub>2</sub>O<sub>2</sub> is gaining traction as a promising research area, providing a sustainable method for its production. Herein, a controllable activation of <i>n</i> → π* electronic transition is presented to boost the photocatalytic H<sub>2</sub>O<sub>2</sub> evolution in ionic carbon nitrides. This enhancement is achieved through the simultaneous introduction of structural distortions and defect sites (─C ≡ N groups and N vacancies) into the KPHI framework. The optimal catalyst (<i>2%Ox-</i>KPHI) reached an apparent quantum yield of 41% at 410 nm without the need for any cocatalysts, outperforming most previously reported carbon nitride-based photocatalysts. Extensive experimental characterizations and theoretical calculations confirm that a corrugated configuration and the presence of defects significantly broaden the light absorption profile, improve carrier separation and migration, promote O<sub>2</sub> adsorption, and lower the energy barriers for H<sub>2</sub>O<sub>2</sub> desorption. Transient absorption spectroscopy indicates that the enhanced photocatalytic performance of <i>2%Ox</i>-KPHI is largely attributed to the preferential migration of electrons at defect sites over extended timescales, following the diffusion of geminate carriers across the PHI sheets.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 49","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202412753","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202412753","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) is a crucial chemical used in numerous industrial applications, yet its manufacturing relies on the energy-demanding anthraquinone process. Solar-driven synthesis of H2O2 is gaining traction as a promising research area, providing a sustainable method for its production. Herein, a controllable activation of n → π* electronic transition is presented to boost the photocatalytic H2O2 evolution in ionic carbon nitrides. This enhancement is achieved through the simultaneous introduction of structural distortions and defect sites (─C ≡ N groups and N vacancies) into the KPHI framework. The optimal catalyst (2%Ox-KPHI) reached an apparent quantum yield of 41% at 410 nm without the need for any cocatalysts, outperforming most previously reported carbon nitride-based photocatalysts. Extensive experimental characterizations and theoretical calculations confirm that a corrugated configuration and the presence of defects significantly broaden the light absorption profile, improve carrier separation and migration, promote O2 adsorption, and lower the energy barriers for H2O2 desorption. Transient absorption spectroscopy indicates that the enhanced photocatalytic performance of 2%Ox-KPHI is largely attributed to the preferential migration of electrons at defect sites over extended timescales, following the diffusion of geminate carriers across the PHI sheets.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可控 n → π* 电子转变活化提高离子氮化碳在光催化 H2O2 生成过程中的量子效率
过氧化氢(H2O2)是一种在众多工业应用中使用的重要化学品,但其生产依赖于耗能的蒽醌工艺。太阳能驱动的 H2O2 合成是一个前景广阔的研究领域,它为 H2O2 的生产提供了一种可持续的方法。本文提出了一种可控的 n → π* 电子转变激活方法,以促进离子碳氮化物中 H2O2 的光催化演化。这种增强是通过在 KPHI 框架中同时引入结构畸变和缺陷位点(-C ≡ N 基团和 N 空位)实现的。最佳催化剂(2%Ox-KPHI)在 410 纳米波长下的表观量子产率达到 41%,无需任何共催化剂,优于之前报道的大多数基于氮化碳的光催化剂。广泛的实验表征和理论计算证实,波纹结构和缺陷的存在大大拓宽了光吸收曲线,改善了载流子分离和迁移,促进了 O2 吸附,并降低了 H2O2 解吸的能量障碍。瞬态吸收光谱表明,2%Ox-KPHI 光催化性能的增强主要归因于电子在缺陷位点的优先迁移,其时间尺度随宝石载流子在 PHI 片上的扩散而延长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Issue Information Field-Programmable Topographic-Morphing Array for General-Purpose Lab-on-a-Chip Systems (Adv. Mater. 7/2025) Molecular Imaging of Ovarian Follicles and Tumors With Near-Infrared II Bioconjugates (Adv. Mater. 7/2025) Novel Selectivity: Target of Gas Sensing Defined by Behavior (Adv. Mater. 7/2025) Photon-Induced Ultrafast Multitemporal Programming of Terahertz Metadevices (Adv. Mater. 7/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1