NTK-Guided Few-Shot Class Incremental Learning

Jingren Liu;Zhong Ji;Yanwei Pang;Yunlong Yu
{"title":"NTK-Guided Few-Shot Class Incremental Learning","authors":"Jingren Liu;Zhong Ji;Yanwei Pang;Yunlong Yu","doi":"10.1109/TIP.2024.3478854","DOIUrl":null,"url":null,"abstract":"The proliferation of Few-Shot Class Incremental Learning (FSCIL) methodologies has highlighted the critical challenge of maintaining robust anti-amnesia capabilities in FSCIL learners. In this paper, we present a novel conceptualization of anti-amnesia in terms of mathematical generalization, leveraging the Neural Tangent Kernel (NTK) perspective. Our method focuses on two key aspects: ensuring optimal NTK convergence and minimizing NTK-related generalization loss, which serve as the theoretical foundation for cross-task generalization. To achieve global NTK convergence, we introduce a principled meta-learning mechanism that guides optimization within an expanded network architecture. Concurrently, to reduce the NTK-related generalization loss, we systematically optimize its constituent factors. Specifically, we initiate self-supervised pre-training on the base session to enhance NTK-related generalization potential. These self-supervised weights are then carefully refined through curricular alignment, followed by the application of dual NTK regularization tailored specifically for both convolutional and linear layers. Through the combined effects of these measures, our network acquires robust NTK properties, ensuring optimal convergence and stability of the NTK matrix and minimizing the NTK-related generalization loss, significantly enhancing its theoretical generalization. On popular FSCIL benchmark datasets, our NTK-FSCIL surpasses contemporary state-of-the-art approaches, elevating end-session accuracy by 2.9% to 9.3%.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6029-6044"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10721322/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of Few-Shot Class Incremental Learning (FSCIL) methodologies has highlighted the critical challenge of maintaining robust anti-amnesia capabilities in FSCIL learners. In this paper, we present a novel conceptualization of anti-amnesia in terms of mathematical generalization, leveraging the Neural Tangent Kernel (NTK) perspective. Our method focuses on two key aspects: ensuring optimal NTK convergence and minimizing NTK-related generalization loss, which serve as the theoretical foundation for cross-task generalization. To achieve global NTK convergence, we introduce a principled meta-learning mechanism that guides optimization within an expanded network architecture. Concurrently, to reduce the NTK-related generalization loss, we systematically optimize its constituent factors. Specifically, we initiate self-supervised pre-training on the base session to enhance NTK-related generalization potential. These self-supervised weights are then carefully refined through curricular alignment, followed by the application of dual NTK regularization tailored specifically for both convolutional and linear layers. Through the combined effects of these measures, our network acquires robust NTK properties, ensuring optimal convergence and stability of the NTK matrix and minimizing the NTK-related generalization loss, significantly enhancing its theoretical generalization. On popular FSCIL benchmark datasets, our NTK-FSCIL surpasses contemporary state-of-the-art approaches, elevating end-session accuracy by 2.9% to 9.3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NTK引导的 "几枪 "类增量学习
快速类增量学习(FSCIL)方法的普及凸显了在 FSCIL 学习者中保持强大的反遗忘能力这一严峻挑战。在本文中,我们利用神经切分核(NTK)的观点,从数学概括的角度提出了反遗忘的新概念。我们的方法侧重于两个关键方面:确保最佳的 NTK 收敛性和最小化 NTK 相关的泛化损失,这两个方面是跨任务泛化的理论基础。为了实现全局 NTK 收敛,我们引入了一种原则性元学习机制,在扩展的网络架构内指导优化。同时,为了减少与 NTK 相关的泛化损失,我们对其组成因素进行了系统优化。具体来说,我们在基础会话上启动了自我监督预训练,以增强与 NTK 相关的泛化潜力。然后,通过课程调整对这些自我监督权重进行仔细完善,接着应用专门为卷积层和线性层定制的双重 NTK 正则化。通过这些措施的综合作用,我们的网络获得了强大的 NTK 特性,确保了 NTK 矩阵的最佳收敛性和稳定性,并最大限度地减少了 NTK 相关的泛化损失,从而显著增强了其理论泛化能力。在流行的 FSCIL 基准数据集上,我们的 NTK-FSCIL 超越了当代最先进的方法,将会终准确率提高了 2.9% 至 9.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1