Neural network–enabled, all-electronic control of non-Newtonian fluid flow

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-10-18 DOI:10.1063/5.0226525
Huilu Bao, Xin Zhang, Xiaoyu Zhang, Xiao Fan, J. William Boley, Jinglei Ping
{"title":"Neural network–enabled, all-electronic control of non-Newtonian fluid flow","authors":"Huilu Bao, Xin Zhang, Xiaoyu Zhang, Xiao Fan, J. William Boley, Jinglei Ping","doi":"10.1063/5.0226525","DOIUrl":null,"url":null,"abstract":"Real-time, all-electronic control of non-Newtonian fluid flow through a microscale channel is crucial for various applications in manufacturing and healthcare. However, existing methods lack the sensitivity required for accurate measurement and the real-time responsiveness necessary for effective adjustment. Here, we demonstrate an all-electronic system that enables closed-loop, real-time, high-sensitivity control of various waveforms of non-Newtonian fluid flow (0.76 μl min−1) through a micro-sized outlet. Our approach combines a contactless, cuff-like flow sensor with a neural-network control program. This system offers a simple, miniaturized, versatile, yet high-performance solution for non-Newtonian fluid flow control, easily integrated into existing setups.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0226525","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time, all-electronic control of non-Newtonian fluid flow through a microscale channel is crucial for various applications in manufacturing and healthcare. However, existing methods lack the sensitivity required for accurate measurement and the real-time responsiveness necessary for effective adjustment. Here, we demonstrate an all-electronic system that enables closed-loop, real-time, high-sensitivity control of various waveforms of non-Newtonian fluid flow (0.76 μl min−1) through a micro-sized outlet. Our approach combines a contactless, cuff-like flow sensor with a neural-network control program. This system offers a simple, miniaturized, versatile, yet high-performance solution for non-Newtonian fluid flow control, easily integrated into existing setups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非牛顿流体流动的神经网络全电子控制
对流经微米级通道的非牛顿流体流进行实时、全电子控制,对于制造和医疗保健领域的各种应用至关重要。然而,现有方法缺乏精确测量所需的灵敏度和有效调节所需的实时响应能力。在这里,我们展示了一种全电子系统,它能对通过微型出口的非牛顿流体流(0.76 μl min-1)的各种波形进行闭环、实时、高灵敏度控制。我们的方法结合了非接触式袖带流量传感器和神经网络控制程序。该系统为非牛顿流体流量控制提供了一种简单、微型、多功能、高性能的解决方案,可轻松集成到现有装置中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Robust biomimetic strain sensor based on butterfly wing-derived skeleton structure Neural network–enabled, all-electronic control of non-Newtonian fluid flow Experimental implementation of time reversal in an optical domain Spin Hall effect in platinum deposited by atomic layer deposition Optimization of the dielectric layer parameters through coupled numerical analysis to enhance droplet and particle manipulation in digital microfluidic chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1