Shell-induced enhancement of Fenton-like catalytic performance towards advanced oxidation processes: concept, mechanism, and properties

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-10-18 DOI:10.1016/j.watres.2024.122655
Yuezhu Wang, Mengxiao Zhong, Fuqiu Ma, Ce Wang, Xiaofeng Lu
{"title":"Shell-induced enhancement of Fenton-like catalytic performance towards advanced oxidation processes: concept, mechanism, and properties","authors":"Yuezhu Wang, Mengxiao Zhong, Fuqiu Ma, Ce Wang, Xiaofeng Lu","doi":"10.1016/j.watres.2024.122655","DOIUrl":null,"url":null,"abstract":"Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122655","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝壳诱导增强芬顿催化性能以实现高级氧化过程:概念、机理和特性
类似芬顿的高级氧化工艺(AOPs)通过催化剂和氧化剂之间的反应产生高活性氧物种,通常用于消除难降解的有机污染物。最近,人们开始关注具有高稳定性、活性位点利用率最大化和优异催化性能的壳结构 Fenton 类催化剂。在这篇综述中,我们介绍了几种典型的成壳结构(如中空结构、核壳结构、卵黄壳结构、管内颗粒结构和多壳结构)的概念,阐明了它们通过纳米融合机制在促进 Fenton 类反应催化中的作用。每个方面都强调了壳诱导效应与 Fenton 类催化性能之间的相关性。最后,介绍了未来开发壳结构 Fenton 类催化剂的挑战和机遇,为 AOPs 提供了广阔的实际应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Hydromorphological pressure explains the status of macrophytes and phytoplankton less effectively than eutrophication but contributes to water quality deterioration A machine learning based framework to tailor properties of nanofiltration and reverse osmosis membranes for targeted removal of organic micropollutants Effects of Mono- and Multicomponent Nonaqueous-Phase Liquid on the Migration and Retention of Pollutant-degrading Bacteria in Porous Media Faecal contamination determines bacterial assemblages over natural environmental parameters within intermittently opened and closed lagoons (ICOLLs) during high rainfall The use of ammonia recovered from wastewater as a zero-carbon energy vector to decarbonise heat, power and transport – a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1