Muhammad Kashif Aslam , Iftikhar Hussain , Abdul Jabbar Khan , Shahid Hussain , Syed Shoaib Ahmad Shah , Ali H. Al-Marzouqi , Maowen Xu
{"title":"Unlocking the potential: Innovations and strategies for electrolyte optimization in Zn-ion batteries","authors":"Muhammad Kashif Aslam , Iftikhar Hussain , Abdul Jabbar Khan , Shahid Hussain , Syed Shoaib Ahmad Shah , Ali H. Al-Marzouqi , Maowen Xu","doi":"10.1016/j.ensm.2024.103851","DOIUrl":null,"url":null,"abstract":"<div><div>Zn-ion batteries have emerged as promising energy storage devices due to their high energy density, low cost, and environmental friendliness. To fully exploit their potential, it is essential to enhance their performance through innovative strategies for electrolyte optimization. This article presents a comprehensive review of recent advancements and approaches aimed at improving the performance of Zn-ion batteries by optimizing the electrolyte. The review discusses the importance of electrolyte composition and its impact on ionic conductivity, stability, and safety. It explores various electrolyte components, such as solvents, salts, and additives, and highlights their influence on ion transport and the prevention of side reactions. Additionally, the challenges posed by the aqueous electrolyte system are addressed, with corresponding countermeasures suggested. Strategies for achieving high ionic conductivity and stability are discussed, including the use of novel solvents, salt combinations, and additives with improved properties. Furthermore, this article underscores the significance of advanced characterization and modeling in understanding electrolyte-electrode interactions and guiding electrolyte optimization efforts. In conclusion, emerging trends and future directions in electrolyte optimization for Zn-ion batteries are outlined, providing a roadmap for future research and development in this field.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103851"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zn-ion batteries have emerged as promising energy storage devices due to their high energy density, low cost, and environmental friendliness. To fully exploit their potential, it is essential to enhance their performance through innovative strategies for electrolyte optimization. This article presents a comprehensive review of recent advancements and approaches aimed at improving the performance of Zn-ion batteries by optimizing the electrolyte. The review discusses the importance of electrolyte composition and its impact on ionic conductivity, stability, and safety. It explores various electrolyte components, such as solvents, salts, and additives, and highlights their influence on ion transport and the prevention of side reactions. Additionally, the challenges posed by the aqueous electrolyte system are addressed, with corresponding countermeasures suggested. Strategies for achieving high ionic conductivity and stability are discussed, including the use of novel solvents, salt combinations, and additives with improved properties. Furthermore, this article underscores the significance of advanced characterization and modeling in understanding electrolyte-electrode interactions and guiding electrolyte optimization efforts. In conclusion, emerging trends and future directions in electrolyte optimization for Zn-ion batteries are outlined, providing a roadmap for future research and development in this field.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.