Flat rent price prediction in Berlin with web scraping

Camilo Meyberg, Ulrich Rendtel, Holger Leerhoff
{"title":"Flat rent price prediction in Berlin with web scraping","authors":"Camilo Meyberg,&nbsp;Ulrich Rendtel,&nbsp;Holger Leerhoff","doi":"10.1007/s11943-024-00340-6","DOIUrl":null,"url":null,"abstract":"<div><p>Internet data pose a challenge to the traditional system of official statistics, which relies on more conventional sources such as surveys and registers, not readily adaptable to rapid changes. Expanding this system to include internet data is currently at an experimental stage, exploring these sources’ potentials and benefits. This paper describes a project conducted within the ESSnet <i>Trusted Smart Statistics – Web Intelligence Network</i> framework. It investigates the use of online apartment listings to analyze the rental market. We used web scraping to extract information from two online real estate portals for flats in the city of Berlin. Using this data, we developed a model to predict rental prices per square meter based on the accommodation’s features and location within the city. We detected offers which appear in both portals by means of statistical matching and removed duplicate offers. Missing values were treated by multiple imputation. The prediction model is a semi-parametric approach where the postal districts are used to describe the location effect. Comparisons with microcensus results and the local rent index reveal significant differences between the market of online flat offers and the stock of existing flat contracts. Interested readers will find the commented programming code in the internet supplement.</p></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"18 2","pages":"245 - 278"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11943-024-00340-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-024-00340-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet data pose a challenge to the traditional system of official statistics, which relies on more conventional sources such as surveys and registers, not readily adaptable to rapid changes. Expanding this system to include internet data is currently at an experimental stage, exploring these sources’ potentials and benefits. This paper describes a project conducted within the ESSnet Trusted Smart Statistics – Web Intelligence Network framework. It investigates the use of online apartment listings to analyze the rental market. We used web scraping to extract information from two online real estate portals for flats in the city of Berlin. Using this data, we developed a model to predict rental prices per square meter based on the accommodation’s features and location within the city. We detected offers which appear in both portals by means of statistical matching and removed duplicate offers. Missing values were treated by multiple imputation. The prediction model is a semi-parametric approach where the postal districts are used to describe the location effect. Comparisons with microcensus results and the local rent index reveal significant differences between the market of online flat offers and the stock of existing flat contracts. Interested readers will find the commented programming code in the internet supplement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用网络搜索预测柏林公寓租金价格
互联网数据对传统的官方统计系统提出了挑战,因为传统的官方统计系统依赖于调查和登记等较传统的来源,不易适应快速的变化。将这一系统扩展到互联网数据目前正处于试验阶段,探索这些来源的潜力和益处。本文介绍了在 ESSnet 可信智能统计--网络智能网络框架内开展的一个项目。该项目研究了如何利用在线公寓列表来分析租赁市场。我们使用网络搜刮技术从柏林市的两个在线房地产门户网站中提取公寓信息。利用这些数据,我们建立了一个模型,根据住房的特点和在城市中的位置来预测每平方米的租金价格。我们通过统计匹配方法检测了两个门户网站中出现的报价,并删除了重复报价。缺失值通过多重估算进行处理。预测模型是一种半参数方法,使用邮区来描述位置效应。通过与微观人口普查结果和当地租金指数进行比较,发现在线公寓报价市场与现有公寓合同存量之间存在显著差异。感兴趣的读者可在互联网增刊中找到注释编程代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vorwort der Herausgeber Connecting algorithmic fairness to quality dimensions in machine learning in official statistics and survey production Automated Bayesian variable selection methods for binary regression models with missing covariate data Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln Interview mit Walter Krämer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1