Direct and lagged climate change effects intensified the 2022 European drought

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Nature Geoscience Pub Date : 2024-10-21 DOI:10.1038/s41561-024-01559-2
Emanuele Bevacqua, Oldrich Rakovec, Dominik L. Schumacher, Rohini Kumar, Stephan Thober, Luis Samaniego, Sonia I. Seneviratne, Jakob Zscheischler
{"title":"Direct and lagged climate change effects intensified the 2022 European drought","authors":"Emanuele Bevacqua, Oldrich Rakovec, Dominik L. Schumacher, Rohini Kumar, Stephan Thober, Luis Samaniego, Sonia I. Seneviratne, Jakob Zscheischler","doi":"10.1038/s41561-024-01559-2","DOIUrl":null,"url":null,"abstract":"In 2022, Europe faced an extensive summer drought with severe socioeconomic consequences. Quantifying the influence of human-induced climate change on such an extreme event can help prepare for future droughts. Here, by combining observations and climate model outputs with hydrological and land-surface simulations, we show that Central and Southern Europe experienced the highest observed total water storage deficit since satellite observations began in 2002, probably representing the highest and most widespread soil moisture deficit in the past six decades. While precipitation deficits primarily drove the soil moisture drought, human-induced global warming contributed to over 30% of the drought intensity and its spatial extent via enhanced evaporation. We identify that 14–41% of the climate change contribution was mediated by the warming-driven drying of the soil that occurred before the hydrological year of 2022, indicating the importance of considering lagged climate change effects to avoid underestimating associated risks. Human-induced climate change had qualitatively similar effects on the extremely low observed river discharges. These results highlight that global warming effects on droughts are already underway, widespread and long lasting, and that drought risk may escalate with further human-induced warming in the future. An attribution analysis using observations, hydrological models and climate models suggests that both direct and lagged effects of climate warming contributed to Europe experiencing the highest observed water storage deficit in the satellite era during the widespread drought of 2022.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1100-1107"},"PeriodicalIF":15.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01559-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01559-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In 2022, Europe faced an extensive summer drought with severe socioeconomic consequences. Quantifying the influence of human-induced climate change on such an extreme event can help prepare for future droughts. Here, by combining observations and climate model outputs with hydrological and land-surface simulations, we show that Central and Southern Europe experienced the highest observed total water storage deficit since satellite observations began in 2002, probably representing the highest and most widespread soil moisture deficit in the past six decades. While precipitation deficits primarily drove the soil moisture drought, human-induced global warming contributed to over 30% of the drought intensity and its spatial extent via enhanced evaporation. We identify that 14–41% of the climate change contribution was mediated by the warming-driven drying of the soil that occurred before the hydrological year of 2022, indicating the importance of considering lagged climate change effects to avoid underestimating associated risks. Human-induced climate change had qualitatively similar effects on the extremely low observed river discharges. These results highlight that global warming effects on droughts are already underway, widespread and long lasting, and that drought risk may escalate with further human-induced warming in the future. An attribution analysis using observations, hydrological models and climate models suggests that both direct and lagged effects of climate warming contributed to Europe experiencing the highest observed water storage deficit in the satellite era during the widespread drought of 2022.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化的直接和滞后影响加剧了 2022 年欧洲干旱
2022 年,欧洲遭遇了大范围的夏季干旱,造成了严重的社会经济后果。量化人类引起的气候变化对这一极端事件的影响有助于为未来的干旱做好准备。在这里,通过将观测数据和气候模式输出结果与水文和地表模拟相结合,我们表明中欧和南欧经历了自2002年开始卫星观测以来观测到的最高的总蓄水赤字,这可能是过去60年中最高和最普遍的土壤水分赤字。虽然降水不足是造成土壤水分干旱的主要原因,但人类引起的全球变暖通过增强蒸发造成了超过 30% 的干旱强度及其空间范围。我们发现,14%-41%的气候变化影响是由 2022 年水文年之前发生的气候变暖导致的土壤干燥引起的,这表明考虑滞后的气候变化影响以避免低估相关风险的重要性。人类引起的气候变化对观测到的极低河流排水量也有类似的影响。这些结果突出表明,全球变暖对干旱的影响已经开始,影响范围广且持续时间长,干旱风险可能会随着未来人为因素导致的进一步变暖而升级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
期刊最新文献
Author Correction: Recent uplift of Chomolungma enhanced by river drainage piracy Author Correction: An ongoing satellite–ring cycle of Mars and the origins of Phobos and Deimos Episodic warm climates on early Mars primed by crustal hydration Magma composition drives tremors during a volcanic eruption Outer planet frontier of geoscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1