Evaluation of Near-Isothermal Phase-Change CO2 Capture Technology with Heat Pump

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-10-21 DOI:10.1021/acs.iecr.4c00722
Dongyuan Chang, Siyang Tang, Shan Zhong, Yangyang Yu, Chao Chen, Houfang Lu, Bin Liang
{"title":"Evaluation of Near-Isothermal Phase-Change CO2 Capture Technology with Heat Pump","authors":"Dongyuan Chang, Siyang Tang, Shan Zhong, Yangyang Yu, Chao Chen, Houfang Lu, Bin Liang","doi":"10.1021/acs.iecr.4c00722","DOIUrl":null,"url":null,"abstract":"Developing low-energy decarbonization technology is crucial for achieving large-scale CO<sub>2</sub> capture from industrial flue gas. During the absorption of CO<sub>2</sub>, phase-change solvents (PCSs) can be separated into a CO<sub>2</sub>-rich phase and a CO<sub>2</sub>-lean phase. By exclusively supplying the CO<sub>2</sub>-rich phase to the desorber for solvent regeneration, the need for sensible heat is eliminated as a result of the reduction of the amount of solvent. However, the heat absorbed by the CO<sub>2</sub>-lean phase remains unrecovered. This study proposes a near-isothermal CO<sub>2</sub> capture technology utilizing phase-change solvents (NI-PCSs-TCC) to recover the reaction heat absorbed by the CO<sub>2</sub>-lean phase to compensate for regeneration heat through a heat pump system. A Solvent-Technology Matching Method (STMM) is proposed, which helps to co-optimize the solvent concentration and process operation parameters. The optimal operating range for the MEA/sulfolane/water solvent concentration and process parameters within the NI-PCSs-TCC is evaluated. NI-PCSs-TCC can achieve an energy consumption of 2.16 GJ/t CO<sub>2</sub> between the temperature ranges of 338.15–341.15 K for absorption and 379.15–383.15 K for desorption. This energy reduction is possible while maintaining a capture efficiency of over 90% and a lean loading of 0.2540 mol of CO<sub>2</sub>/mol of amine.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c00722","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing low-energy decarbonization technology is crucial for achieving large-scale CO2 capture from industrial flue gas. During the absorption of CO2, phase-change solvents (PCSs) can be separated into a CO2-rich phase and a CO2-lean phase. By exclusively supplying the CO2-rich phase to the desorber for solvent regeneration, the need for sensible heat is eliminated as a result of the reduction of the amount of solvent. However, the heat absorbed by the CO2-lean phase remains unrecovered. This study proposes a near-isothermal CO2 capture technology utilizing phase-change solvents (NI-PCSs-TCC) to recover the reaction heat absorbed by the CO2-lean phase to compensate for regeneration heat through a heat pump system. A Solvent-Technology Matching Method (STMM) is proposed, which helps to co-optimize the solvent concentration and process operation parameters. The optimal operating range for the MEA/sulfolane/water solvent concentration and process parameters within the NI-PCSs-TCC is evaluated. NI-PCSs-TCC can achieve an energy consumption of 2.16 GJ/t CO2 between the temperature ranges of 338.15–341.15 K for absorption and 379.15–383.15 K for desorption. This energy reduction is possible while maintaining a capture efficiency of over 90% and a lean loading of 0.2540 mol of CO2/mol of amine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用热泵评估近等温相变二氧化碳捕获技术
开发低能耗脱碳技术对于从工业烟气中实现大规模二氧化碳捕集至关重要。在吸收二氧化碳的过程中,相变溶剂(PCS)可分离成富含二氧化碳的相和不含二氧化碳的相。通过将富含二氧化碳的相专门提供给解吸塔进行溶剂再生,可减少溶剂用量,从而消除对显热的需求。但是,二氧化碳清洁相吸收的热量仍未回收。本研究提出了一种利用相变溶剂的近等温二氧化碳捕集技术(NI-PCSs-TCC),通过热泵系统回收二氧化碳清洁相吸收的反应热,以补偿再生热量。提出的溶剂技术匹配法 (STMM) 有助于共同优化溶剂浓度和工艺操作参数。评估了 NI-PCSs-TCC 中 MEA/硫醇/水溶剂浓度和工艺参数的最佳操作范围。在 338.15-341.15 K 的吸收温度范围和 379.15-383.15 K 的解吸温度范围之间,NI-PCSs-TCC 可实现 2.16 GJ/t CO2 的能耗。在保持 90% 以上的捕获效率和 0.2540 摩尔 CO2/摩尔胺的贫载量的同时,还能降低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Evaluation of Near-Isothermal Phase-Change CO2 Capture Technology with Heat Pump Maximization of Hydrogen Production via Methane Steam Reforming in a Wavy Microreactor by Optimization of Catalyst Coating: A Combined Computational and Data Analytics Approach Construction of Vertically Interconnected Microdiamond Channels Inspired by Subcutis for Thermal Conductivity Enhancement of Polymer Composite Films Digital Design of Cooling Crystallization Processes Using a Machine Learning-Based Strategy Effect of Anions on the Memory Effect in the Tetra-n-butylammonium Dicarboxylate Semiclathrate Hydrate Reformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1