Man Zhang, Lu Cai, Cui Li, Qiong Zhang, Weixin Wang, Kaixuan Wang
{"title":"The assessment of environmental effect and economic benefit for apple orchard under different stand ages in the Loess Plateau, China","authors":"Man Zhang, Lu Cai, Cui Li, Qiong Zhang, Weixin Wang, Kaixuan Wang","doi":"10.1007/s11104-024-06999-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Methods and aims</h3><p>This study continuously monitored the greenhouse gas (GHG) emissions from different stand ages apple orchards, estimated the carbon footprint (CF) based on the life cycle assessment (LCA) method, and evaluated the net ecosystem carbon budget (NECB) and net ecosystem economic benefit (NEEB).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The CO<sub>2</sub> emissions from soil respiration increased with the stand ages. The N<sub>2</sub>O emission in 15-year fertilized orchard (N15) was higher than that in 5-year fertilized orchard (N5) and 25-year fertilized orchard (N25) by 119.5% and 53.7%, respectively. Compared to non-fertilized plots, fertilization significantly increased the soil CO<sub>2</sub> emissions, N<sub>2</sub>O emissions, soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) contents and soil organic carbon sequestration rate (SOCSR). Meanwhile, SOC, MBC, SOCSR increased with the stand ages. The total CF in different stand ages apple orchards ranged from –786.8 to 8768.1 kg CO<sub>2</sub>-eq ha<sup>–1</sup>yr<sup>–1</sup>, and the CF was positively correlated with fertilizer application rates and N<sub>2</sub>O emissions. For the fertilized plots, fertilizer (38.6%-49.1%) and N<sub>2</sub>O emissions (12.0%-14.9%) were the top two contributors to total CF. N<sub>2</sub>O emissions and pesticides were essential contributors to total CF for the non-fertilized plots. The NECB was negatively correlated with yield and CO<sub>2</sub> emissions, and the NEEB was positively correlated with yield, excessive fertilizer input decreased the NEEB.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The optimizing fertilizer management and increasing apple yield should be the efficiency strategies employed to increase economic benefit and decrease environmental effects, which would be beneficial to the sustainable development of apple orchards in Loess Plateau, China.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"29 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06999-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Methods and aims
This study continuously monitored the greenhouse gas (GHG) emissions from different stand ages apple orchards, estimated the carbon footprint (CF) based on the life cycle assessment (LCA) method, and evaluated the net ecosystem carbon budget (NECB) and net ecosystem economic benefit (NEEB).
Results
The CO2 emissions from soil respiration increased with the stand ages. The N2O emission in 15-year fertilized orchard (N15) was higher than that in 5-year fertilized orchard (N5) and 25-year fertilized orchard (N25) by 119.5% and 53.7%, respectively. Compared to non-fertilized plots, fertilization significantly increased the soil CO2 emissions, N2O emissions, soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) contents and soil organic carbon sequestration rate (SOCSR). Meanwhile, SOC, MBC, SOCSR increased with the stand ages. The total CF in different stand ages apple orchards ranged from –786.8 to 8768.1 kg CO2-eq ha–1yr–1, and the CF was positively correlated with fertilizer application rates and N2O emissions. For the fertilized plots, fertilizer (38.6%-49.1%) and N2O emissions (12.0%-14.9%) were the top two contributors to total CF. N2O emissions and pesticides were essential contributors to total CF for the non-fertilized plots. The NECB was negatively correlated with yield and CO2 emissions, and the NEEB was positively correlated with yield, excessive fertilizer input decreased the NEEB.
Conclusions
The optimizing fertilizer management and increasing apple yield should be the efficiency strategies employed to increase economic benefit and decrease environmental effects, which would be beneficial to the sustainable development of apple orchards in Loess Plateau, China.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.