{"title":"Combination of plant and soil water potential monitoring and modelling demonstrates soil-root hydraulic disconnection during drought","authors":"Louis Delval, Jan Vanderborght, Mathieu Javaux","doi":"10.1007/s11104-024-07062-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>In grapevines and other deep-rooting plants, heterogeneous drying from the surface to deeper soil layers drives water extraction by roots. Modelling and measurements have shown that dry soils, especially with sandy texture, create abrupt water potential gradient in the rhizosphere. At the scale of the thin contact between the soil and roots, the hydraulic continuity could be lost at the soil-root interface in dry soil conditions. This study aimed to understand how the multiscale interactions between soil and roots affect grapevine root water uptake and water potential.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Using a physically-based model, implementing rhizosphere and root system hydraulic properties, and loss of soil-root hydraulic continuity in dry soil conditions, we quantified belowground hydraulic conductances and their impact on grapevine root water uptake and water potential in different soil types with vertical hydraulic properties heterogeneity.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Soil-root hydraulic disconnection prevented the plant from feeling the dry shallowest soil horizons avoiding very negative trunk water potentials, and moved water uptake towards deeper wet soil horizons. The main belowground hydraulic bottleneck of soil-plant system during drought is soil-texture dependent, with the rhizosphere limiting root water uptake in the sandy subplot, and the root system in the loamy subplot.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>By highlighting the key roles of rhizosphere hydraulics, root hydraulics and hydraulic disconnection on root water uptake and plant water status, in different edaphic conditions, this study enhanced our mechanistic understanding on soil-root water relations in soil water limited conditions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"228 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07062-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
In grapevines and other deep-rooting plants, heterogeneous drying from the surface to deeper soil layers drives water extraction by roots. Modelling and measurements have shown that dry soils, especially with sandy texture, create abrupt water potential gradient in the rhizosphere. At the scale of the thin contact between the soil and roots, the hydraulic continuity could be lost at the soil-root interface in dry soil conditions. This study aimed to understand how the multiscale interactions between soil and roots affect grapevine root water uptake and water potential.
Methods
Using a physically-based model, implementing rhizosphere and root system hydraulic properties, and loss of soil-root hydraulic continuity in dry soil conditions, we quantified belowground hydraulic conductances and their impact on grapevine root water uptake and water potential in different soil types with vertical hydraulic properties heterogeneity.
Results
Soil-root hydraulic disconnection prevented the plant from feeling the dry shallowest soil horizons avoiding very negative trunk water potentials, and moved water uptake towards deeper wet soil horizons. The main belowground hydraulic bottleneck of soil-plant system during drought is soil-texture dependent, with the rhizosphere limiting root water uptake in the sandy subplot, and the root system in the loamy subplot.
Conclusion
By highlighting the key roles of rhizosphere hydraulics, root hydraulics and hydraulic disconnection on root water uptake and plant water status, in different edaphic conditions, this study enhanced our mechanistic understanding on soil-root water relations in soil water limited conditions.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.