Ilhan Tomris, Anne L M Kimpel, Ruonan Liang, Roosmarijn van der Woude, Geert-Jan P H Boons, Zeshi Li, Robert P de Vries
{"title":"The HCoV-HKU1 N-Terminal Domain Binds a Wide Range of 9-<i>O</i>-Acetylated Sialic Acids Presented on Different Glycan Cores.","authors":"Ilhan Tomris, Anne L M Kimpel, Ruonan Liang, Roosmarijn van der Woude, Geert-Jan P H Boons, Zeshi Li, Robert P de Vries","doi":"10.1021/acsinfecdis.4c00488","DOIUrl":null,"url":null,"abstract":"<p><p>Coronaviruses (CoVs) recognize a wide array of protein and glycan receptors by using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possesses an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9-<i>O</i>-acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that the HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GnTI<sup>-</sup> cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high mannose-containing NTD proteins revealed a much broader receptor binding profile compared to that of its fully glycosylated counterpart. Using glycan microarrays, we observed that 9-<i>O</i>-acetylated α2-3-linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding toward 9-<i>O</i>-acetylated sialoglycans, independent of the glycan core (glycolipids, <i>N-</i> or <i>O</i>-glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"3880-3890"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00488","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coronaviruses (CoVs) recognize a wide array of protein and glycan receptors by using the S1 subunit of the spike (S) glycoprotein. The S1 subunit contains two functional domains: the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD). The S1-NTD of SARS-CoV-2, MERS-CoV, and HCoV-HKU1 possesses an evolutionarily conserved glycan binding cleft that facilitates weak interactions with sialic acids on cell surfaces. HCoV-HKU1 employs 9-O-acetylated α2-8-linked disialylated structures for initial binding, followed by TMPRSS2 receptor binding and virus-cell fusion. Here, we demonstrate that the HCoV-HKU1 NTD has a broader receptor binding repertoire than previously recognized. We presented HCoV-HKU1 NTD Fc chimeras on a nanoparticle system to mimic the densely decorated surface of HCoV-HKU1. These proteins were expressed by HEK293S GnTI- cells, generating species carrying Man-5 structures, often observed near the receptor binding site of CoVs. This multivalent presentation of high mannose-containing NTD proteins revealed a much broader receptor binding profile compared to that of its fully glycosylated counterpart. Using glycan microarrays, we observed that 9-O-acetylated α2-3-linked sialylated LacNAc structures are also bound, comparable to OC43 NTD, suggesting an evolutionarily conserved glycan-binding modality. Further characterization of receptor specificity indicated promiscuous binding toward 9-O-acetylated sialoglycans, independent of the glycan core (glycolipids, N- or O-glycans). We demonstrate that HCoV-HKU1 may employ additional sialoglycan receptors to trigger conformational changes in the spike glycoprotein to expose the S1-CTD for proteinaceous receptor binding.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.