Computer-Aided Flexible Loops Engineering of Glutamate Dehydrogenase for Asymmetric Synthesis of Chiral Pesticides l-phosphinothricin.

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2024-10-22 DOI:10.1021/acs.jafc.4c06294
Kai Yang, Yueshan Huang, Charles Amanze, Liyi Yao, Richmond Anaman, Bin Huang, Weimin Zeng
{"title":"Computer-Aided Flexible Loops Engineering of Glutamate Dehydrogenase for Asymmetric Synthesis of Chiral Pesticides l-phosphinothricin.","authors":"Kai Yang, Yueshan Huang, Charles Amanze, Liyi Yao, Richmond Anaman, Bin Huang, Weimin Zeng","doi":"10.1021/acs.jafc.4c06294","DOIUrl":null,"url":null,"abstract":"<p><p>The access to the enantiopure noncanonical amino acid l-phosphinothricin (l-PPT) by applying biocatalysts is highly appealing in organic chemistry. In this study, a NADH-dependent glutamate dehydrogenase from <i>Lachnospiraceae bacterium</i> (<i>Lb</i>GluDH) was chosen for the asymmetric synthesis of l-PPT. Three flexible loops undergoing big conformational shifts during the catalysis were identified and rationally engineered following the initial mutagenesis. The enzyme's specific activity toward the key precursor of l-PPT, 2-oxo-4-[(hydroxy) (methyl) phosphinyl] butyric acid (PPO), was improved from negligible to 9 U/mg, and the <i>K</i><sub>m</sub> value was reduced to 17 mM. The computational analysis showed that the modified loops broadened the enzyme's narrow tunnels, allowing the substrate to access the binding pocket and get closer to the crucial residue D165, thereby enhancing the catalytic process. Utilizing the variant as the catalyst, the preparation of l-PPT achieved a 100% conversion rate within 60 min, coupled with a stereoselectivity exceeding 99.9%, demonstrating its practical capacity for industrial application. Similar enhancement in catalytic activity was obtained applying the same strategy to a typical NADH-dependent GluDH from <i>Pyrobaculum islandicum</i> (<i>Pis</i>GluDH), indicating the effectiveness of our strategy for the protein engineering of GluDHs targeted to the biosynthesis of unnatural compounds.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06294","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The access to the enantiopure noncanonical amino acid l-phosphinothricin (l-PPT) by applying biocatalysts is highly appealing in organic chemistry. In this study, a NADH-dependent glutamate dehydrogenase from Lachnospiraceae bacterium (LbGluDH) was chosen for the asymmetric synthesis of l-PPT. Three flexible loops undergoing big conformational shifts during the catalysis were identified and rationally engineered following the initial mutagenesis. The enzyme's specific activity toward the key precursor of l-PPT, 2-oxo-4-[(hydroxy) (methyl) phosphinyl] butyric acid (PPO), was improved from negligible to 9 U/mg, and the Km value was reduced to 17 mM. The computational analysis showed that the modified loops broadened the enzyme's narrow tunnels, allowing the substrate to access the binding pocket and get closer to the crucial residue D165, thereby enhancing the catalytic process. Utilizing the variant as the catalyst, the preparation of l-PPT achieved a 100% conversion rate within 60 min, coupled with a stereoselectivity exceeding 99.9%, demonstrating its practical capacity for industrial application. Similar enhancement in catalytic activity was obtained applying the same strategy to a typical NADH-dependent GluDH from Pyrobaculum islandicum (PisGluDH), indicating the effectiveness of our strategy for the protein engineering of GluDHs targeted to the biosynthesis of unnatural compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
Akkermansia muciniphila Growth Promoted by Lychee Major Flavonoid through Bacteroides uniformis Metabolism. Computer-Aided Flexible Loops Engineering of Glutamate Dehydrogenase for Asymmetric Synthesis of Chiral Pesticides l-phosphinothricin. Ginsenoside Rk3 Treats Corneal Injury Through the HMGB1/TLR4/NF-κB Pathway. Laccase: A Green Biocatalyst Offers Immense Potential for Food Industrial and Biotechnological Applications. Research on the Synergistic Inhibition of Angiotensin-Converting Enzyme (ACE) by the Gastrointestinal Digestion Products of the ACE Inhibitory Peptide FPPDVA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1