Analysis of the Effects of Ionic Liquid Properties on Electrospray Thruster Performance.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2024-10-21 DOI:10.1021/acs.jpcb.4c04319
Joshua H Howell, Brian K Canfield, Lino Costa, James E Rhodes, Alexander Terekhov, Trevor M Moeller
{"title":"Analysis of the Effects of Ionic Liquid Properties on Electrospray Thruster Performance.","authors":"Joshua H Howell, Brian K Canfield, Lino Costa, James E Rhodes, Alexander Terekhov, Trevor M Moeller","doi":"10.1021/acs.jpcb.4c04319","DOIUrl":null,"url":null,"abstract":"<p><p>Ionic liquids (ILs) have proven extremely useful for a wide variety of roles, including as propellants for electrospray thrusters (ETs), due to their unique physical and chemical properties, as well as the potential tunability of those properties, through chemical engineering. However, there is a lack of literature exploring the effects of IL properties on ET operation. This paper presents experimental results investigating key physical properties of the common ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMI-TFO), EAN, and Bmpyr-DCA not provided by manufacturers or reported in the literature, namely, their electrochemical stability windows (ESWs) and contact angles. Cyclic voltammetry experiments were employed to define the ESW of each IL, which is necessary for long-term ET operation while avoiding chemical breakdown. Contact-angle measurements were also conducted to study the wettability of the ILs on glass surfaces to be used for ET thruster substrates [Howell, J. H.; . <i>J. Electrost.</i> 2023, 122, 103799]. In addition, an analytical discussion is presented using established parametric relationships and scaling laws to examine the effects of relevant IL physical properties, such as surface tension and ion molecular weights, on ET performance. The results demonstrate the relative impact of IL properties on important ET figures of merit such as thrust density, power density, and specific impulse, which provide key insights into the future development of novel ILs specifically tailored for use as ET propellants.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04319","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic liquids (ILs) have proven extremely useful for a wide variety of roles, including as propellants for electrospray thrusters (ETs), due to their unique physical and chemical properties, as well as the potential tunability of those properties, through chemical engineering. However, there is a lack of literature exploring the effects of IL properties on ET operation. This paper presents experimental results investigating key physical properties of the common ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMI-TFO), EAN, and Bmpyr-DCA not provided by manufacturers or reported in the literature, namely, their electrochemical stability windows (ESWs) and contact angles. Cyclic voltammetry experiments were employed to define the ESW of each IL, which is necessary for long-term ET operation while avoiding chemical breakdown. Contact-angle measurements were also conducted to study the wettability of the ILs on glass surfaces to be used for ET thruster substrates [Howell, J. H.; . J. Electrost. 2023, 122, 103799]. In addition, an analytical discussion is presented using established parametric relationships and scaling laws to examine the effects of relevant IL physical properties, such as surface tension and ion molecular weights, on ET performance. The results demonstrate the relative impact of IL properties on important ET figures of merit such as thrust density, power density, and specific impulse, which provide key insights into the future development of novel ILs specifically tailored for use as ET propellants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Applying Computational Spectroscopy Methods to Raman Spectra of Dicationic, Imidazolium-Based, Ionic Liquids. Memory Effects Explain the Fractional Viscosity Dependence of Rates Associated with Internal Friction: Simple Models and Applications to Butane Dihedral Rotation. Structures of the First Epitaxial Layer Created in Colloidal Heteroepitaxy. Analysis of the Effects of Ionic Liquid Properties on Electrospray Thruster Performance. Dynamic Interplay of Loop Motions Governs the Molecular Level Regulatory Dynamics in Spleen Tyrosine Kinase: Insights from Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1