Low-Cost Hyperelastic Fuller-Dome-Structured Nanocellulose Aerogels by Dual Templates for Personal Thermal Management.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-22 DOI:10.1002/adma.202414896
Guang Wang, Jiabing Feng, Zhezhe Zhou, Zheng Liu, Jianpeng Wu, Jingchao Li, Qiang Gao, Mark Lynch, Jianzhang Li, Pingan Song
{"title":"Low-Cost Hyperelastic Fuller-Dome-Structured Nanocellulose Aerogels by Dual Templates for Personal Thermal Management.","authors":"Guang Wang, Jiabing Feng, Zhezhe Zhou, Zheng Liu, Jianpeng Wu, Jingchao Li, Qiang Gao, Mark Lynch, Jianzhang Li, Pingan Song","doi":"10.1002/adma.202414896","DOIUrl":null,"url":null,"abstract":"<p><p>It is critically important to maintain the body's thermal comfort for human beings in extremely cold environments. Cellulose nanofibers (CNF)-based aerogels represent a promising sustainable material for body's heat retention because of their renewability and low thermal conductivity. However, CNF-based aerogels often suffer high production costs due to expensive CNF, poor elasticity and/or unsatisfactory thermal insulation owing to improper microstructure design. Here, a facile dual-template strategy is reported to prepare a low-cost, hyperelastic, superhydrophobic Fuller-dome-structured CNF aerogel (CNF@PU) with low thermal conductivity. The combination of air template by foaming process and ice template enables the formation of a dome-like microstructure of CNF@PU aerogel, in which CNF serves as rope bars while inexpensive polyurethane (PU) acts as joints. The aerogel combines ultra-elasticity, low thermal conductivity (24 mW m<sup>-1</sup> K<sup>-1</sup>), and low costs. The as-prepared CNF@PU aerogel demonstrates much better heat retention than commercial thermal retention fillers (e.g., Flannelette and goose down), promising its great commercial potential for massively producing warming garments. This work provides a facile approach for creating high-performance aerogels with tailored microstructure for effective personal thermal management.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414896","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is critically important to maintain the body's thermal comfort for human beings in extremely cold environments. Cellulose nanofibers (CNF)-based aerogels represent a promising sustainable material for body's heat retention because of their renewability and low thermal conductivity. However, CNF-based aerogels often suffer high production costs due to expensive CNF, poor elasticity and/or unsatisfactory thermal insulation owing to improper microstructure design. Here, a facile dual-template strategy is reported to prepare a low-cost, hyperelastic, superhydrophobic Fuller-dome-structured CNF aerogel (CNF@PU) with low thermal conductivity. The combination of air template by foaming process and ice template enables the formation of a dome-like microstructure of CNF@PU aerogel, in which CNF serves as rope bars while inexpensive polyurethane (PU) acts as joints. The aerogel combines ultra-elasticity, low thermal conductivity (24 mW m-1 K-1), and low costs. The as-prepared CNF@PU aerogel demonstrates much better heat retention than commercial thermal retention fillers (e.g., Flannelette and goose down), promising its great commercial potential for massively producing warming garments. This work provides a facile approach for creating high-performance aerogels with tailored microstructure for effective personal thermal management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于个人热管理的双模板低成本高弹性富勒多姆结构纳米纤维素气凝胶
保持人体在极寒环境中的热舒适度至关重要。基于纤维素纳米纤维(CNF)的气凝胶具有可再生性和低导热性,是一种很有前景的可持续人体保温材料。然而,由于 CNF 价格昂贵、弹性差和/或微结构设计不当导致隔热性能不理想,CNF 气凝胶的生产成本往往很高。本文报告了一种简便的双模板策略,用于制备低成本、高弹性、超疏水性的富勒穹顶结构 CNF 气凝胶(CNF@PU)。通过发泡工艺将空气模板与冰模板相结合,可形成穹顶状的 CNF@PU 气凝胶微结构,其中 CNF 充当绳杆,而廉价的聚氨酯(PU)充当接头。这种气凝胶集超弹性、低导热率(24 mW m-1 K-1)和低成本于一身。制备的 CNF@PU 气凝胶的保暖性能远远优于商业保暖填充物(如羊绒毯和鹅绒),有望在大规模生产保暖服装方面发挥巨大的商业潜力。这项研究提供了一种简便的方法,用于制造具有定制微结构的高性能气凝胶,以实现有效的个人热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Performance Prediction of High-Entropy Perovskites La0.8Sr0.2MnxCoyFezO3 with Automated High-Throughput Characterization of Combinatorial Libraries and Machine Learning Biomimetic Chlorosomes: Oxygen-Independent Photocatalytic Nanoreactors for Efficient Combination Photoimmunotherapy Substantially Enhanced Spin Polarization in Epitaxial CrTe2 Quantum Films Unlocking the Trade-off Between Intrinsic and Interfacial Thermal Transport of Boron Nitride Nanosheets by Surface Functionalization for Advanced Thermal Interface Materials Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1