Yue Wang, Jifan Zhao, Yuzhu Xing, Yan Dong, Zhong Wang, Yasushi Hasebe, Ray H Baughman
{"title":"Covalent Organic Framework Derived Oxygen/Sulfur-Doped Porous Carbon for Robust High-Capacitance Symmetric Supercapacitors.","authors":"Yue Wang, Jifan Zhao, Yuzhu Xing, Yan Dong, Zhong Wang, Yasushi Hasebe, Ray H Baughman","doi":"10.1002/asia.202400930","DOIUrl":null,"url":null,"abstract":"<p><p>Heteroatom-doped porous carbons (HPCs) have been considered promising electrode materials for supercapacitors due to their improvement of energy density by providing extra pseudocapacity. Covalent organic frameworks (COFs) are obtaining great importance in energy storage because of their designable structure and versatile functionality. Herein, we designed and fabricated oxygen and sulfur dual-doped covalent organic framework (COF) derived HPCs with very high heteroatoms content (up to 25.76 atom%) via a facile coupling reaction. The optimized HPCs exhibit a porous structure with high specific surface area (up to 2835 m<sup>2</sup> g<sup>-1</sup>) along with a high specific capacitance (430 F g<sup>-1</sup> at 0.5 A g<sup>-1</sup>), excellent capacitance retention (96.9 %), and high coulombic efficiency (98.5 %) after 10000 cycles at 5 A g<sup>-1</sup>. As electrodes for aqueous symmetric supercapacitors, the HPCs exhibits a high energy density of 60 Wh kg<sup>-1</sup> at a 250 W kg<sup>-1</sup> power density, excellent cycling stability of capacity retention (82.2 %) and a high coulombic efficiency (92.3 %) after 10000 cycles at 10 A g<sup>-1</sup>, indicating attractive application potential in chemical energy storage. This work establishes a promising strategy for preparation of high heteroatom content HPCs using COFs and demonstrates great potential for energy storage/conversion devices.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202400930"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400930","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heteroatom-doped porous carbons (HPCs) have been considered promising electrode materials for supercapacitors due to their improvement of energy density by providing extra pseudocapacity. Covalent organic frameworks (COFs) are obtaining great importance in energy storage because of their designable structure and versatile functionality. Herein, we designed and fabricated oxygen and sulfur dual-doped covalent organic framework (COF) derived HPCs with very high heteroatoms content (up to 25.76 atom%) via a facile coupling reaction. The optimized HPCs exhibit a porous structure with high specific surface area (up to 2835 m2 g-1) along with a high specific capacitance (430 F g-1 at 0.5 A g-1), excellent capacitance retention (96.9 %), and high coulombic efficiency (98.5 %) after 10000 cycles at 5 A g-1. As electrodes for aqueous symmetric supercapacitors, the HPCs exhibits a high energy density of 60 Wh kg-1 at a 250 W kg-1 power density, excellent cycling stability of capacity retention (82.2 %) and a high coulombic efficiency (92.3 %) after 10000 cycles at 10 A g-1, indicating attractive application potential in chemical energy storage. This work establishes a promising strategy for preparation of high heteroatom content HPCs using COFs and demonstrates great potential for energy storage/conversion devices.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).