Pyrene Derived Donor-Acceptor as a Host for Fullerene Unveils the Crystallinity in Semiconducting Nanostructures.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2024-11-20 DOI:10.1002/asia.202401268
Prasanthkumar Seelam, Priti Kumari, Manne Naga Rajesh, Nagadatta Pravallika, Lingamallu Giribabu
{"title":"Pyrene Derived Donor-Acceptor as a Host for Fullerene Unveils the Crystallinity in Semiconducting Nanostructures.","authors":"Prasanthkumar Seelam, Priti Kumari, Manne Naga Rajesh, Nagadatta Pravallika, Lingamallu Giribabu","doi":"10.1002/asia.202401268","DOIUrl":null,"url":null,"abstract":"<p><p>Donor-acceptor in linear π-conjugated systems elicits the intramolecular charge transfer which improves the optical and electronic characteristics. Nevertheless, linear arrangement of electron donor and acceptor finely tune the charge or electron transfer process divulges the device performance. Therefore, molecular engineering of appropriate D-A with precise spacer is indeed challenging. Herein, we synthesized two bispyrene derivatives and attached with benzothiadazole and phenyl group through imidazole spacer (PyBTD and PyBz). PyBTD has shown solvatochromism demonstrates the intramolecular charge transfer (ICT) from pyrene to benzothiadiazole while PyBz remains as pristine spectra. Microscopic images reveal that network-type structures for PyBTD and elongated nanorods from self-assemblies of PyBz. Subsequently, host-guest interactions suggest that C60 was encapsulated in concave shaped bispyrene controls their crystallinity in nanostructures leads short nanosheets. Impedance analyses depict ICT assisted nanowires facilitate improved conductivity than host-guest complex. Therefore, imidazole spacer between D-A systems paves the way to design such type of molecules for future generated optoelectronics.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401268"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401268","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Donor-acceptor in linear π-conjugated systems elicits the intramolecular charge transfer which improves the optical and electronic characteristics. Nevertheless, linear arrangement of electron donor and acceptor finely tune the charge or electron transfer process divulges the device performance. Therefore, molecular engineering of appropriate D-A with precise spacer is indeed challenging. Herein, we synthesized two bispyrene derivatives and attached with benzothiadazole and phenyl group through imidazole spacer (PyBTD and PyBz). PyBTD has shown solvatochromism demonstrates the intramolecular charge transfer (ICT) from pyrene to benzothiadiazole while PyBz remains as pristine spectra. Microscopic images reveal that network-type structures for PyBTD and elongated nanorods from self-assemblies of PyBz. Subsequently, host-guest interactions suggest that C60 was encapsulated in concave shaped bispyrene controls their crystallinity in nanostructures leads short nanosheets. Impedance analyses depict ICT assisted nanowires facilitate improved conductivity than host-guest complex. Therefore, imidazole spacer between D-A systems paves the way to design such type of molecules for future generated optoelectronics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为富勒烯宿主的芘衍生供体-受体揭示了半导体纳米结构的结晶性。
线性π共轭体系中的供体-受体可引起分子内电荷转移,从而改善光学和电子特性。然而,电子供体和受体的线性排列会对电荷或电子转移过程进行微调,从而影响器件的性能。因此,利用精确的间隔物进行适当的 D-A 分子工程设计确实具有挑战性。在此,我们合成了两种双芘衍生物,并通过咪唑间隔物连接了苯并噻二唑和苯基(PyBTD 和 PyBz)。PyBTD 显示出溶解色,证明了从芘到苯并噻二唑的分子内电荷转移(ICT),而 PyBz 则保持原始光谱。显微图像显示,PyBTD 具有网络型结构,而 PyBz 的自组装则产生了细长的纳米棒。随后,主客体之间的相互作用表明,C60 被包裹在凹形双芘中,控制了它们在纳米结构中的结晶度,从而形成了短纳米片。阻抗分析表明,与主-客复合物相比,信息和通信技术辅助纳米线可提高导电性。因此,D-A 系统之间的咪唑间隔物为设计此类分子用于未来产生的光电子学铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Photoinduced Electron Transfer System from Cesium Lead Bromide Quantum Dots to Naphthalenediimide Supramolecular Polymers. A Fluorescent Covalent Organic Cage for Ultrafast Detection of Picric Acid and HCl Vapor Sensing. N-Protection Dependent Phosphorylation of Dehydroamino Acids: Facile Synthesis of Phosphono- Amino Acids and Short Peptides. Pyrene Derived Donor-Acceptor as a Host for Fullerene Unveils the Crystallinity in Semiconducting Nanostructures. A Sandwich-structured EVA/Cu2O/Cu Composite Current Collector to Suppress the Lithium Dendrite Growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1