TaWRKY55-TaPLATZ2 module negatively regulate saline-alkali stress tolerance in wheat.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2024-10-22 DOI:10.1111/jipb.13793
Lin Wei, Xinman Ren, Lumin Qin, Rong Zhang, Minghan Cui, Guangmin Xia, Shuwei Liu
{"title":"TaWRKY55-TaPLATZ2 module negatively regulate saline-alkali stress tolerance in wheat.","authors":"Lin Wei, Xinman Ren, Lumin Qin, Rong Zhang, Minghan Cui, Guangmin Xia, Shuwei Liu","doi":"10.1111/jipb.13793","DOIUrl":null,"url":null,"abstract":"<p><p>Saline-alkaline soils are a major environmental problem that limit plant growth and crop productivity. Plasma membrane H<sup>+</sup>-ATPases and the salt overly sensitive (SOS) signaling pathway play important roles in plant responses to saline-alkali stress. However, little is known about the functional genes and mechanisms regulating the transcription of H<sup>+</sup>-ATPases and SOS pathway genes under saline-alkali stress. In the present study, we identified that the plant AT-rich sequence and zinc-binding (TaPLATZ2) transcription factor are involved in wheat response to saline-alkali stress by directly suppressing the expression of TaHA2/TaSOS3. The knockdown of TaPLATZ2 enhances salt and alkali stress tolerance, while overexpression of TaPLATZ2 leads to salt and alkali stress sensitivity in wheat. In addition, TaWRKY55 directly upregulated the expression of TaPLATZ2 during saline-alkali stress. Through knockdown and overexpression of TaWRKY55 in wheat, TaWRKY55 was shown to negatively modulate salt and alkali stress tolerance. Genetic analyses confirmed that TaPLATZ2 functions downstream of TaWRKY55 in response to salt and alkaline stresses. These findings provide a TaWRKY55-TaPLATZ2-TaHA2/TaSOS3 regulatory module that regulates wheat responses to saline-alkali stress.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13793","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Saline-alkaline soils are a major environmental problem that limit plant growth and crop productivity. Plasma membrane H+-ATPases and the salt overly sensitive (SOS) signaling pathway play important roles in plant responses to saline-alkali stress. However, little is known about the functional genes and mechanisms regulating the transcription of H+-ATPases and SOS pathway genes under saline-alkali stress. In the present study, we identified that the plant AT-rich sequence and zinc-binding (TaPLATZ2) transcription factor are involved in wheat response to saline-alkali stress by directly suppressing the expression of TaHA2/TaSOS3. The knockdown of TaPLATZ2 enhances salt and alkali stress tolerance, while overexpression of TaPLATZ2 leads to salt and alkali stress sensitivity in wheat. In addition, TaWRKY55 directly upregulated the expression of TaPLATZ2 during saline-alkali stress. Through knockdown and overexpression of TaWRKY55 in wheat, TaWRKY55 was shown to negatively modulate salt and alkali stress tolerance. Genetic analyses confirmed that TaPLATZ2 functions downstream of TaWRKY55 in response to salt and alkaline stresses. These findings provide a TaWRKY55-TaPLATZ2-TaHA2/TaSOS3 regulatory module that regulates wheat responses to saline-alkali stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
TaWRKY55-TaPLATZ2 module negatively regulate saline-alkali stress tolerance in wheat. Issue information page Cover Image: The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). Sucrose induces flowering by degradation of the floral repressor Ghd7 via K48-linked polyubiquitination in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1