{"title":"Organic-Inorganic Hybrid Materials from Vegetable Oils.","authors":"Eline Laurent, Milan Maric","doi":"10.1002/marc.202400408","DOIUrl":null,"url":null,"abstract":"<p><p>The production of materials based on fossil resources is yielding more sustainable and ecologically beneficial methods. Vegetable oils (VO) are one example of base materials whose derivatives rival the properties of their petro-based counterparts. Gaps exist however and one way to fill them is by employing sol-gel processes to synthesize organic-inorganic hybrid materials, often derived from silane/siloxane compounds. Creating Si─O─Si inorganic networks in the organic VO matrix permits the attainment of necessary strength, among other property enhancements. Consequently, many efforts have been directed to optimally achieve organic-inorganic hybrid materials with VOs. However, compatibilization is challenging, and desirable conditions for matching the inorganic filler in the organic matrix remain a key stumbling block toward wider application. Therefore, this review aims to detail recent progress on these new hybrids, focusing on the main strategies to polymerize and functionalize the raw VO, followed by routes highlighting the addition of the inorganic fillers to obtain desirable composites.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400408"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400408","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The production of materials based on fossil resources is yielding more sustainable and ecologically beneficial methods. Vegetable oils (VO) are one example of base materials whose derivatives rival the properties of their petro-based counterparts. Gaps exist however and one way to fill them is by employing sol-gel processes to synthesize organic-inorganic hybrid materials, often derived from silane/siloxane compounds. Creating Si─O─Si inorganic networks in the organic VO matrix permits the attainment of necessary strength, among other property enhancements. Consequently, many efforts have been directed to optimally achieve organic-inorganic hybrid materials with VOs. However, compatibilization is challenging, and desirable conditions for matching the inorganic filler in the organic matrix remain a key stumbling block toward wider application. Therefore, this review aims to detail recent progress on these new hybrids, focusing on the main strategies to polymerize and functionalize the raw VO, followed by routes highlighting the addition of the inorganic fillers to obtain desirable composites.
以化石资源为基础的材料生产正在产生更具可持续性和生态效益的方法。植物油(VO)是基础材料的一个例子,其衍生物的性能可与石油为基础的材料相媲美。然而,差距依然存在,填补这些差距的方法之一是采用溶胶-凝胶工艺合成有机-无机混合材料,这些材料通常来自硅烷/硅氧烷化合物。在有机 VO 基体中形成 Si─O─Si 无机网络,可以获得必要的强度和其他性能的提高。因此,许多人都在努力以最佳方式实现带有 VO 的有机-无机杂化材料。然而,相容具有挑战性,有机基质中无机填料的理想匹配条件仍然是实现更广泛应用的关键绊脚石。因此,本综述旨在详细介绍这些新型杂化材料的最新进展,重点关注原料 VO 的聚合和功能化的主要策略,随后重点介绍添加无机填料以获得理想复合材料的路线。
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.