Thermal Conductivity of Polymers: A Simple Matter Where Complexity Matters.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-10-18 DOI:10.1002/marc.202400517
Debashish Mukherji
{"title":"Thermal Conductivity of Polymers: A Simple Matter Where Complexity Matters.","authors":"Debashish Mukherji","doi":"10.1002/marc.202400517","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal conductivity coefficient κ measures the ability of a material to conduct a heat current. In particular, κ is an important property that often dictates the usefulness of a material over a wide range of environmental conditions. For example, while a low κ is desirable for the thermoelectric applications, a large κ is needed when a material is used under the high temperature conditions. These materials range from common crystals to commodity amorphous polymers. The latter is of particular importance because of their use in designing light weight high performance functional materials. In this context, however, one of the major limitations of the amorphous polymers is their low κ, reaching a maximum value of ≈0.4 W/Km that is 2-3 orders of magnitude smaller than the standard crystals. Moreover, when energy is predominantly transferred through the bonded connections, κ ⩾ 100 W/Km. Recently, extensive efforts have been devoted to attain a tunability in κ via macromolecular engineering. In this work, an overview of the recent results on the κ behavior in polymers and polymeric solids is presented. In particular, computational and theoretical results are discussed within the context of complimentary experiments. Future directions are also highlighted.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400517","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal conductivity coefficient κ measures the ability of a material to conduct a heat current. In particular, κ is an important property that often dictates the usefulness of a material over a wide range of environmental conditions. For example, while a low κ is desirable for the thermoelectric applications, a large κ is needed when a material is used under the high temperature conditions. These materials range from common crystals to commodity amorphous polymers. The latter is of particular importance because of their use in designing light weight high performance functional materials. In this context, however, one of the major limitations of the amorphous polymers is their low κ, reaching a maximum value of ≈0.4 W/Km that is 2-3 orders of magnitude smaller than the standard crystals. Moreover, when energy is predominantly transferred through the bonded connections, κ ⩾ 100 W/Km. Recently, extensive efforts have been devoted to attain a tunability in κ via macromolecular engineering. In this work, an overview of the recent results on the κ behavior in polymers and polymeric solids is presented. In particular, computational and theoretical results are discussed within the context of complimentary experiments. Future directions are also highlighted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物的导热性:简单问题复杂化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
On the Use of Reflection Polarized Optical Microscopy for Rapid Comparison of Crystallinity and Phase Segregation of P3HT:PCBM Thin Films. Polymerization-Induced Self-Assembly Providing PEG-Gels with Dynamic Micelle-Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances. Exploration of the Photoluminescence Behavior and Emission Mechanism of Thioester Polyacrylamide Tablets During the Gradual Increase of Molecular Weight. NIR-II Image-Guided Wound Healing in Hypoxic Diabetic Foot Ulcers: The Potential of Ergothioneine-Luteolin-Chitin Hydrogels. Thermal Conductivity of Polymers: A Simple Matter Where Complexity Matters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1