Three-dimensional anisotropic unified continuum model for simulating the healing of damaged soft biological tissues

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2024-10-17 DOI:10.1007/s10237-024-01888-6
Di Zuo, Mingji Zhu, Daye Chen, Qiwen Xue, Stéphane Avril, Klaus Hackl, Yiqian He
{"title":"Three-dimensional anisotropic unified continuum model for simulating the healing of damaged soft biological tissues","authors":"Di Zuo,&nbsp;Mingji Zhu,&nbsp;Daye Chen,&nbsp;Qiwen Xue,&nbsp;Stéphane Avril,&nbsp;Klaus Hackl,&nbsp;Yiqian He","doi":"10.1007/s10237-024-01888-6","DOIUrl":null,"url":null,"abstract":"<div><p>The soft biological tissues have the ability to heal and self-repair after damage or injury. During the healing process, damaged tissues are replaced by newly produced undamaged tissue to restore homeostasis. Computational modeling serves as an effective tool for simulating the healing process and understanding the underlying mechanisms. In previous work, we developed the first unified continuum damage model for the healing of soft biological tissues. However, the initial theory lacked generalizability to more realistic scenarios and applicability to biomechanical problems due to the simplicity of the isotropic constitutive model and two-dimensional simulations. Therefore, we further improve our approach by developing a three-dimensional anisotropic unified healing model to address more realistic challenges. By using the Holzapfel–Gasser–Ogden model as the hyperelastic term, the influence of the collagen fibers is considered and the reorientation of fibers in healing is simulated. Three numerical examples related to hypertension, aneurysm, and restenosis of the atherosclerotic artery after balloon angioplasty are presented to demonstrate the effectiveness of the proposed model. By comparing numerical solutions and reference solutions, we demonstrate the ability of the proposed model in simulating long-term tissue healing process and analyze the impact of anisotropic terms.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"2193 - 2212"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01888-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The soft biological tissues have the ability to heal and self-repair after damage or injury. During the healing process, damaged tissues are replaced by newly produced undamaged tissue to restore homeostasis. Computational modeling serves as an effective tool for simulating the healing process and understanding the underlying mechanisms. In previous work, we developed the first unified continuum damage model for the healing of soft biological tissues. However, the initial theory lacked generalizability to more realistic scenarios and applicability to biomechanical problems due to the simplicity of the isotropic constitutive model and two-dimensional simulations. Therefore, we further improve our approach by developing a three-dimensional anisotropic unified healing model to address more realistic challenges. By using the Holzapfel–Gasser–Ogden model as the hyperelastic term, the influence of the collagen fibers is considered and the reorientation of fibers in healing is simulated. Three numerical examples related to hypertension, aneurysm, and restenosis of the atherosclerotic artery after balloon angioplasty are presented to demonstrate the effectiveness of the proposed model. By comparing numerical solutions and reference solutions, we demonstrate the ability of the proposed model in simulating long-term tissue healing process and analyze the impact of anisotropic terms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于模拟受损生物软组织愈合的三维各向异性统一连续体模型。
生物软组织在受损或受伤后具有愈合和自我修复的能力。在愈合过程中,受损组织会被新生成的未受损组织取代,从而恢复平衡。计算模型是模拟愈合过程和了解其基本机制的有效工具。在之前的工作中,我们建立了第一个统一的连续损伤模型,用于软生物组织的愈合。然而,由于各向同性构成模型和二维模拟的简易性,最初的理论缺乏对更现实场景的普适性和对生物力学问题的适用性。因此,我们通过开发三维各向异性统一愈合模型来进一步改进我们的方法,以应对更现实的挑战。通过使用 Holzapfel-Gasser-Ogden 模型作为超弹性项,我们考虑了胶原纤维的影响,并模拟了愈合过程中纤维的重新定向。本文列举了三个与高血压、动脉瘤和球囊血管成形术后动脉粥样硬化再狭窄有关的数值示例,以证明所提模型的有效性。通过比较数值解和参考解,我们证明了所提模型模拟长期组织愈合过程的能力,并分析了各向异性项的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
A review on the mucus dynamics in the human respiratory airway. The mechanical response of polymeric gyroid structures in an optimised orthotic insole. Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study. A non-intrusive reduced-order model for finite element analysis of implant positioning in total hip replacements. Comparison and identification of human coronary plaques with/without erosion using patient-specific optical coherence tomography-based fluid-structure interaction models: a pilot study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1