Bridging biomechanics with neuropathological and neuroimaging insights for mTBI understanding through multiscale and multiphysics computational modeling.

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2025-02-11 DOI:10.1007/s10237-024-01924-5
Zhibo Du, Jiarui Zhang, Xinghao Wang, Zhuo Zhuang, Zhanli Liu
{"title":"Bridging biomechanics with neuropathological and neuroimaging insights for mTBI understanding through multiscale and multiphysics computational modeling.","authors":"Zhibo Du, Jiarui Zhang, Xinghao Wang, Zhuo Zhuang, Zhanli Liu","doi":"10.1007/s10237-024-01924-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mild traumatic brain injury (mTBI) represents a significant public health challenge in modern society. An in-depth analysis of the injury mechanisms, pathological forms, and assessment criteria of mTBI has underscored the pivotal role of craniocerebral models in comprehending and addressing mTBI. Research indicates that although existing finite element craniocerebral models have made strides in simulating the macroscopic biomechanical responses of the brain, they still fall short in accurately depicting the complexity of mTBI. Consequently, this paper emphasizes the necessity of integrating biomechanics, neuropathology, and neuroimaging to develop multiscale and multiphysics craniocerebral models, which are crucial for precisely capturing microscopic injuries, establishing pathological mechanical indicators, and simulating secondary and long-term brain functional impairments. The comprehensive analysis and in-depth discussion presented in this paper offer new perspectives and approaches for understanding, diagnosing, and preventing mTBI, potentially contributing to alleviating the global burden of mTBI.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01924-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mild traumatic brain injury (mTBI) represents a significant public health challenge in modern society. An in-depth analysis of the injury mechanisms, pathological forms, and assessment criteria of mTBI has underscored the pivotal role of craniocerebral models in comprehending and addressing mTBI. Research indicates that although existing finite element craniocerebral models have made strides in simulating the macroscopic biomechanical responses of the brain, they still fall short in accurately depicting the complexity of mTBI. Consequently, this paper emphasizes the necessity of integrating biomechanics, neuropathology, and neuroimaging to develop multiscale and multiphysics craniocerebral models, which are crucial for precisely capturing microscopic injuries, establishing pathological mechanical indicators, and simulating secondary and long-term brain functional impairments. The comprehensive analysis and in-depth discussion presented in this paper offer new perspectives and approaches for understanding, diagnosing, and preventing mTBI, potentially contributing to alleviating the global burden of mTBI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
Optimisation of romosozumab plus denosumab sequential treatments against postmenopausal osteoporosis. Insights from in silico simulations. Bridging biomechanics with neuropathological and neuroimaging insights for mTBI understanding through multiscale and multiphysics computational modeling. The relationship between regional mechanical properties and hemodynamic indices of the aortic arch: a preliminary study. Transient flow-induced deformation of cancer cells in microchannels: a general computational model and experiments. Impact of lesion preparation-induced calcified plaque defects in vascular intervention for atherosclerotic disease: in silico assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1