Fei Jiang, Ge Zhao, Rosa Rodriguez-Monguio, Yanyuan Ma
{"title":"Causal effect estimation in survival analysis with high dimensional confounders.","authors":"Fei Jiang, Ge Zhao, Rosa Rodriguez-Monguio, Yanyuan Ma","doi":"10.1093/biomtc/ujae110","DOIUrl":null,"url":null,"abstract":"<p><p>With the ever advancing of modern technologies, it has become increasingly common that the number of collected confounders exceeds the number of subjects in a data set. However, matching based methods for estimating causal treatment effect in their original forms are not capable of handling high-dimensional confounders, and their various modified versions lack statistical support and valid inference tools. In this article, we propose a new approach for estimating causal treatment effect, defined as the difference of the restricted mean survival time (RMST) under different treatments in high-dimensional setting for survival data. We combine the factor model and the sufficient dimension reduction techniques to construct propensity score and prognostic score. Based on these scores, we develop a kernel based doubly robust estimator of the RMST difference. We demonstrate its link to matching and establish the consistency and asymptotic normality of the estimator. We illustrate our method by analyzing a dataset from a study aimed at comparing the effects of two alternative treatments on the RMST of patients with diffuse large B cell lymphoma.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae110","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the ever advancing of modern technologies, it has become increasingly common that the number of collected confounders exceeds the number of subjects in a data set. However, matching based methods for estimating causal treatment effect in their original forms are not capable of handling high-dimensional confounders, and their various modified versions lack statistical support and valid inference tools. In this article, we propose a new approach for estimating causal treatment effect, defined as the difference of the restricted mean survival time (RMST) under different treatments in high-dimensional setting for survival data. We combine the factor model and the sufficient dimension reduction techniques to construct propensity score and prognostic score. Based on these scores, we develop a kernel based doubly robust estimator of the RMST difference. We demonstrate its link to matching and establish the consistency and asymptotic normality of the estimator. We illustrate our method by analyzing a dataset from a study aimed at comparing the effects of two alternative treatments on the RMST of patients with diffuse large B cell lymphoma.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.