Isaac Garcia-Murillas, Rosalind J Cutts, Giselle Walsh-Crestani, Edward Phillips, Sarah Hrebien, Kathryn Dunne, Kally Sidhu, Robert Daber, Benjamin Hubert, Chiharu Graybill, Peter M DeFord, David J Wooten, Jianhua Zhao, Rachel E Ellsworth, Stephen R D Johnston, Alistair Ring, Simon Russell, Abigail Evans, Anthony Skene, Duncan Wheatley, Ian E Smith, W Michael Korn, Nicholas C Turner
{"title":"Longitudinal monitoring of circulating tumor DNA to detect relapse early and predict outcome in early breast cancer.","authors":"Isaac Garcia-Murillas, Rosalind J Cutts, Giselle Walsh-Crestani, Edward Phillips, Sarah Hrebien, Kathryn Dunne, Kally Sidhu, Robert Daber, Benjamin Hubert, Chiharu Graybill, Peter M DeFord, David J Wooten, Jianhua Zhao, Rachel E Ellsworth, Stephen R D Johnston, Alistair Ring, Simon Russell, Abigail Evans, Anthony Skene, Duncan Wheatley, Ian E Smith, W Michael Korn, Nicholas C Turner","doi":"10.1007/s10549-024-07508-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Detection of molecular residual disease (MRD) allows for the identification of breast cancer patients at high-risk of recurrence, with the potential that early initiation of treatment at early stages of relapse could improve patient outcomes. The Invitae Personalized Cancer Monitoring™ assay (PCM) is a newly developed next-generation sequencing approach that utilizes up to 50 patient-specific, tumor-informed DNA variants, to detect circulating tumor DNA (ctDNA). The ability of the PCM assay to detect MRD before clinical relapse was evaluated.</p><p><strong>Methods: </strong>The cohort included 61 female patients with high-risk breast cancer who underwent neoadjuvant chemotherapy. Plasma samples were collected before and during neoadjuvant therapy, after surgery and during monitoring. PCM was used to detect ctDNA at each time point.</p><p><strong>Results: </strong>The sensitivity to detect ctDNA in plasma from patients who relapsed during the monitoring phase was 76.9% (10/13). Specificity and positive predictive values were both 100% with all (10/61, 16%) of the patients who had ctDNA detected during the monitoring phase subsequently relapsing. Detection of ctDNA during monitoring was associated with a high-risk of future relapse (HR 37.2, 95% CI 10.5-131.9, p < 0.0001), with a median lead-time from ctDNA detection to clinical relapse of 11.7 months.</p><p><strong>Conclusion: </strong>PCM detected ctDNA in patients who relapsed with a long lead-time over clinical relapse, shows strong association with relapse-free survival and may be used to identify patients at high-risk for relapse, allowing for earlier intervention.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-024-07508-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Detection of molecular residual disease (MRD) allows for the identification of breast cancer patients at high-risk of recurrence, with the potential that early initiation of treatment at early stages of relapse could improve patient outcomes. The Invitae Personalized Cancer Monitoring™ assay (PCM) is a newly developed next-generation sequencing approach that utilizes up to 50 patient-specific, tumor-informed DNA variants, to detect circulating tumor DNA (ctDNA). The ability of the PCM assay to detect MRD before clinical relapse was evaluated.
Methods: The cohort included 61 female patients with high-risk breast cancer who underwent neoadjuvant chemotherapy. Plasma samples were collected before and during neoadjuvant therapy, after surgery and during monitoring. PCM was used to detect ctDNA at each time point.
Results: The sensitivity to detect ctDNA in plasma from patients who relapsed during the monitoring phase was 76.9% (10/13). Specificity and positive predictive values were both 100% with all (10/61, 16%) of the patients who had ctDNA detected during the monitoring phase subsequently relapsing. Detection of ctDNA during monitoring was associated with a high-risk of future relapse (HR 37.2, 95% CI 10.5-131.9, p < 0.0001), with a median lead-time from ctDNA detection to clinical relapse of 11.7 months.
Conclusion: PCM detected ctDNA in patients who relapsed with a long lead-time over clinical relapse, shows strong association with relapse-free survival and may be used to identify patients at high-risk for relapse, allowing for earlier intervention.