A time series algorithm to predict surgery in neonatal necrotizing enterocolitis.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-18 DOI:10.1186/s12911-024-02695-w
Cheng Cui, Ling Qiu, Ling Li, Fei-Long Chen, Xiao Liu, Huan Sun, Xiao-Chen Liu, Lei Bao, Lu-Quan Li
{"title":"A time series algorithm to predict surgery in neonatal necrotizing enterocolitis.","authors":"Cheng Cui, Ling Qiu, Ling Li, Fei-Long Chen, Xiao Liu, Huan Sun, Xiao-Chen Liu, Lei Bao, Lu-Quan Li","doi":"10.1186/s12911-024-02695-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Determining the optimal timing of surgical intervention for Neonatal necrotizing enterocolitis (NEC) poses significant challenges. This study develops a predictive model using the long short-term memory network (LSTM) with a focal loss (FL) to identify infants at risk of developing Bell IIB + NEC early and issue timely surgical warnings.</p><p><strong>Methods: </strong>Data from 791 neonates diagnosed with NEC are gathered from the Neonatal Intensive Care Unit (NICU), encompassing 35 selected features. Infants are categorized into those requiring surgical intervention (n = 257) and those managed medically (n = 534) based on the Mod-Bell criteria. A fivefold cross-validation approach is employed for training and testing. The LSTM algorithm is utilized to capture and utilize temporal relationships in the dataset, with FL employed as a loss function to address class imbalance. Model performance metrics include precision, recall, F1 score, and average precision (AP).</p><p><strong>Results: </strong>The model tested on a real dataset demonstrated high performance. Predicting surgical risk 1 day in advance achieved precision (0.913 ± 0.034), recall (0.841 ± 0.053), F1 score (0.874 ± 0.029), and AP (0.917 ± 0.025). The 2-days-in-advance predictions yielded (0.905 ± 0.036), recall (0.815 ± 0.057), F1 score (0.857 ± 0.035), and AP (0.905 ± 0.029).</p><p><strong>Conclusion: </strong>The LSTM model with FL exhibits high precision and recall in forecasting the need for surgical intervention 1 or 2 days ahead. This predictive capability holds promise for enhancing infants' outcomes by facilitating timely clinical decisions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02695-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Determining the optimal timing of surgical intervention for Neonatal necrotizing enterocolitis (NEC) poses significant challenges. This study develops a predictive model using the long short-term memory network (LSTM) with a focal loss (FL) to identify infants at risk of developing Bell IIB + NEC early and issue timely surgical warnings.

Methods: Data from 791 neonates diagnosed with NEC are gathered from the Neonatal Intensive Care Unit (NICU), encompassing 35 selected features. Infants are categorized into those requiring surgical intervention (n = 257) and those managed medically (n = 534) based on the Mod-Bell criteria. A fivefold cross-validation approach is employed for training and testing. The LSTM algorithm is utilized to capture and utilize temporal relationships in the dataset, with FL employed as a loss function to address class imbalance. Model performance metrics include precision, recall, F1 score, and average precision (AP).

Results: The model tested on a real dataset demonstrated high performance. Predicting surgical risk 1 day in advance achieved precision (0.913 ± 0.034), recall (0.841 ± 0.053), F1 score (0.874 ± 0.029), and AP (0.917 ± 0.025). The 2-days-in-advance predictions yielded (0.905 ± 0.036), recall (0.815 ± 0.057), F1 score (0.857 ± 0.035), and AP (0.905 ± 0.029).

Conclusion: The LSTM model with FL exhibits high precision and recall in forecasting the need for surgical intervention 1 or 2 days ahead. This predictive capability holds promise for enhancing infants' outcomes by facilitating timely clinical decisions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测新生儿坏死性小肠结肠炎手术的时间序列算法。
背景:确定新生儿坏死性小肠结肠炎(NEC)手术干预的最佳时机是一项重大挑战。本研究利用长短期记忆网络(LSTM)和病灶缺失(FL)建立了一个预测模型,以早期识别有患 Bell IIB + NEC 风险的婴儿,并及时发出手术警告:从新生儿重症监护室(NICU)收集了 791 名确诊为 NEC 的新生儿的数据,包括 35 个选定特征。根据莫德-贝尔(Mod-Bell)标准,将婴儿分为需要手术干预的婴儿(n = 257)和药物治疗的婴儿(n = 534)。训练和测试采用了五重交叉验证方法。利用 LSTM 算法捕捉和利用数据集中的时间关系,并使用 FL 作为损失函数来解决类不平衡问题。模型的性能指标包括精确度、召回率、F1 分数和平均精确度(AP):结果:在真实数据集上测试的模型表现出很高的性能。提前 1 天预测手术风险达到了精确度(0.913 ± 0.034)、召回率(0.841 ± 0.053)、F1 分数(0.874 ± 0.029)和平均精确度(0.917 ± 0.025)。提前 2 天预测的结果为(0.905 ± 0.036)、召回率(0.815 ± 0.057)、F1 分数(0.857 ± 0.035)和 AP(0.905 ± 0.029):带有 FL 的 LSTM 模型在预测 1 或 2 天前是否需要手术干预方面表现出较高的精确度和召回率。这种预测能力有助于及时做出临床决策,从而有望提高婴儿的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1