Cheng Cui, Ling Qiu, Ling Li, Fei-Long Chen, Xiao Liu, Huan Sun, Xiao-Chen Liu, Lei Bao, Lu-Quan Li
{"title":"A time series algorithm to predict surgery in neonatal necrotizing enterocolitis.","authors":"Cheng Cui, Ling Qiu, Ling Li, Fei-Long Chen, Xiao Liu, Huan Sun, Xiao-Chen Liu, Lei Bao, Lu-Quan Li","doi":"10.1186/s12911-024-02695-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Determining the optimal timing of surgical intervention for Neonatal necrotizing enterocolitis (NEC) poses significant challenges. This study develops a predictive model using the long short-term memory network (LSTM) with a focal loss (FL) to identify infants at risk of developing Bell IIB + NEC early and issue timely surgical warnings.</p><p><strong>Methods: </strong>Data from 791 neonates diagnosed with NEC are gathered from the Neonatal Intensive Care Unit (NICU), encompassing 35 selected features. Infants are categorized into those requiring surgical intervention (n = 257) and those managed medically (n = 534) based on the Mod-Bell criteria. A fivefold cross-validation approach is employed for training and testing. The LSTM algorithm is utilized to capture and utilize temporal relationships in the dataset, with FL employed as a loss function to address class imbalance. Model performance metrics include precision, recall, F1 score, and average precision (AP).</p><p><strong>Results: </strong>The model tested on a real dataset demonstrated high performance. Predicting surgical risk 1 day in advance achieved precision (0.913 ± 0.034), recall (0.841 ± 0.053), F1 score (0.874 ± 0.029), and AP (0.917 ± 0.025). The 2-days-in-advance predictions yielded (0.905 ± 0.036), recall (0.815 ± 0.057), F1 score (0.857 ± 0.035), and AP (0.905 ± 0.029).</p><p><strong>Conclusion: </strong>The LSTM model with FL exhibits high precision and recall in forecasting the need for surgical intervention 1 or 2 days ahead. This predictive capability holds promise for enhancing infants' outcomes by facilitating timely clinical decisions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02695-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Determining the optimal timing of surgical intervention for Neonatal necrotizing enterocolitis (NEC) poses significant challenges. This study develops a predictive model using the long short-term memory network (LSTM) with a focal loss (FL) to identify infants at risk of developing Bell IIB + NEC early and issue timely surgical warnings.
Methods: Data from 791 neonates diagnosed with NEC are gathered from the Neonatal Intensive Care Unit (NICU), encompassing 35 selected features. Infants are categorized into those requiring surgical intervention (n = 257) and those managed medically (n = 534) based on the Mod-Bell criteria. A fivefold cross-validation approach is employed for training and testing. The LSTM algorithm is utilized to capture and utilize temporal relationships in the dataset, with FL employed as a loss function to address class imbalance. Model performance metrics include precision, recall, F1 score, and average precision (AP).
Results: The model tested on a real dataset demonstrated high performance. Predicting surgical risk 1 day in advance achieved precision (0.913 ± 0.034), recall (0.841 ± 0.053), F1 score (0.874 ± 0.029), and AP (0.917 ± 0.025). The 2-days-in-advance predictions yielded (0.905 ± 0.036), recall (0.815 ± 0.057), F1 score (0.857 ± 0.035), and AP (0.905 ± 0.029).
Conclusion: The LSTM model with FL exhibits high precision and recall in forecasting the need for surgical intervention 1 or 2 days ahead. This predictive capability holds promise for enhancing infants' outcomes by facilitating timely clinical decisions.