C. Rousseau , Q.L. Vuong , Y. Gossuin , B. Maes , G. Rosolen
{"title":"Concurrent photothermal therapy and nuclear magnetic resonance imaging with plasmonic–magnetic nanoparticles: A numerical study","authors":"C. Rousseau , Q.L. Vuong , Y. Gossuin , B. Maes , G. Rosolen","doi":"10.1016/j.cmpb.2024.108453","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>: Theranostics is the combination of the diagnostic and therapeutic phases. Here we focus on simultaneous use of photothermal therapy and magnetic resonance imaging, employing a contrast-photothermal agent that converts incident light into heat and affects the transverse relaxation time, a key magnetic resonance imaging parameter. Our work considers a gold–magnetite nanoshell platform to gauge the feasibility of magnetic resonance imaging monitoring of the heating associated with phototherapy, by studying the modification of the transverse relaxation rate induced by laser illumination of a solution containing these hybrid nanoparticles.</div></div><div><h3>Methods:</h3><div>We simulate a system composed of an aqueous solution with hybrid nanoshells under continuous laser irradiation, enabling the evaluation of spatial variations of the transverse relaxation rate within the sample. We work with the hybrid nanoshell platform comprising a metal/gold shell for thermoplasmonic effects and a magnetite core for magnetic resonance imaging contrast enhancement. The optical properties of the nanoshells are first obtained through simulations using the finite element method. Next, the heating generated by the laser illumination is calculated by numerical integration. Finally, the transverse relaxation rate is obtained through the application of an analytical model. Additionally, we conduct an optimization of the nanoshell geometry to fulfill requirements of both magnetic resonance imaging and phototherapy techniques.</div></div><div><h3>Results:</h3><div>Our findings demonstrate a narrow range of nanoshell sizes exhibiting both a plasmonic absorption peak in the human biological window and a high response to laser illumination of the transverse relaxation rate. Furthermore, the illumination can induce up to a 30% modification in transverse relaxation rate compared to the non-illuminated scenario in this range of nanoshell sizes.</div></div><div><h3>Conclusions:</h3><div>In this work we establish the numerical understanding of the interplay between phototherapy and nuclear magnetic resonance imaging when employed concurrently. This allows magnetic resonance imaging monitoring of the heating associated with phototherapy.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108453"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
: Theranostics is the combination of the diagnostic and therapeutic phases. Here we focus on simultaneous use of photothermal therapy and magnetic resonance imaging, employing a contrast-photothermal agent that converts incident light into heat and affects the transverse relaxation time, a key magnetic resonance imaging parameter. Our work considers a gold–magnetite nanoshell platform to gauge the feasibility of magnetic resonance imaging monitoring of the heating associated with phototherapy, by studying the modification of the transverse relaxation rate induced by laser illumination of a solution containing these hybrid nanoparticles.
Methods:
We simulate a system composed of an aqueous solution with hybrid nanoshells under continuous laser irradiation, enabling the evaluation of spatial variations of the transverse relaxation rate within the sample. We work with the hybrid nanoshell platform comprising a metal/gold shell for thermoplasmonic effects and a magnetite core for magnetic resonance imaging contrast enhancement. The optical properties of the nanoshells are first obtained through simulations using the finite element method. Next, the heating generated by the laser illumination is calculated by numerical integration. Finally, the transverse relaxation rate is obtained through the application of an analytical model. Additionally, we conduct an optimization of the nanoshell geometry to fulfill requirements of both magnetic resonance imaging and phototherapy techniques.
Results:
Our findings demonstrate a narrow range of nanoshell sizes exhibiting both a plasmonic absorption peak in the human biological window and a high response to laser illumination of the transverse relaxation rate. Furthermore, the illumination can induce up to a 30% modification in transverse relaxation rate compared to the non-illuminated scenario in this range of nanoshell sizes.
Conclusions:
In this work we establish the numerical understanding of the interplay between phototherapy and nuclear magnetic resonance imaging when employed concurrently. This allows magnetic resonance imaging monitoring of the heating associated with phototherapy.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.