Yanjuan Jiang, Xiao-Ya Zhang, Shaoqin Li, Yu-Cheng Xie, Xu-Mei Luo, Yongping Yang, Zhengyan Pu, Li Zhang, Jia-Bao Lu, Hai-Jian Huang, Chuan-Xi Zhang, Sheng Yang He
{"title":"Rapid intracellular acidification is a plant defense response countered by the brown planthopper.","authors":"Yanjuan Jiang, Xiao-Ya Zhang, Shaoqin Li, Yu-Cheng Xie, Xu-Mei Luo, Yongping Yang, Zhengyan Pu, Li Zhang, Jia-Bao Lu, Hai-Jian Huang, Chuan-Xi Zhang, Sheng Yang He","doi":"10.1016/j.cub.2024.09.039","DOIUrl":null,"url":null,"abstract":"<p><p>The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"5017-5027.e4"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.09.039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.