Long-term Associations Between Time-varying Exposure to Ambient PM 2.5 and Mortality: An Analysis of the UK Biobank.

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Epidemiology Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI:10.1097/EDE.0000000000001796
Jacopo Vanoli, Arturo de la Cruz Libardi, Francesco Sera, Massimo Stafoggia, Pierre Masselot, Malcolm N Mistry, Sanjay Rajagopalan, Jennifer K Quint, Chris Fook Sheng Ng, Lina Madaniyazi, Antonio Gasparrini
{"title":"Long-term Associations Between Time-varying Exposure to Ambient PM 2.5 and Mortality: An Analysis of the UK Biobank.","authors":"Jacopo Vanoli, Arturo de la Cruz Libardi, Francesco Sera, Massimo Stafoggia, Pierre Masselot, Malcolm N Mistry, Sanjay Rajagopalan, Jennifer K Quint, Chris Fook Sheng Ng, Lina Madaniyazi, Antonio Gasparrini","doi":"10.1097/EDE.0000000000001796","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Evidence for long-term mortality risks of PM 2.5 comes mostly from large administrative studies with incomplete individual information and limited exposure definitions. Here we assess PM 2.5 -mortality associations in the UK Biobank cohort using detailed information on confounders and exposure.</p><p><strong>Methods: </strong>We reconstructed detailed exposure histories for 498,090 subjects by linking residential data with high-resolution PM 2.5 concentrations from spatiotemporal machine-learning models. We split the time-to-event data and assigned yearly exposures over a lag window of 8 years. We fitted Cox proportional hazard models with time-varying exposure controlling for contextual- and individual-level factors, as well as trends. In secondary analyses, we inspected the lag structure using distributed lag models and compared results with alternative exposure sources and definitions.</p><p><strong>Results: </strong>In fully adjusted models, an increase of 10 μg/m³ in PM 2.5 was associated with hazard ratios of 1.27 (95% confidence interval: 1.06, 1.53) for all-cause, 1.24 (1.03, 1.50) for nonaccidental, 2.07 (1.04, 4.10) for respiratory, and 1.66 (0.86, 3.19) for lung cancer mortality. We found no evidence of association with cardiovascular deaths (hazard ratio = 0.88, 95% confidence interval: 0.59, 1.31). We identified strong confounding by both contextual- and individual-level lifestyle factors. The distributed lag analysis suggested differences in relevant exposure windows across mortality causes. Using more informative exposure summaries and sources resulted in higher risk estimates.</p><p><strong>Conclusions: </strong>We found associations of long-term PM 2.5 exposure with all-cause, nonaccidental, respiratory, and lung cancer mortality, but not with cardiovascular mortality. This study benefits from finely reconstructed time-varying exposures and extensive control for confounding, further supporting a plausible causal link between long-term PM 2.5 and mortality.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"1-10"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001796","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Evidence for long-term mortality risks of PM 2.5 comes mostly from large administrative studies with incomplete individual information and limited exposure definitions. Here we assess PM 2.5 -mortality associations in the UK Biobank cohort using detailed information on confounders and exposure.

Methods: We reconstructed detailed exposure histories for 498,090 subjects by linking residential data with high-resolution PM 2.5 concentrations from spatiotemporal machine-learning models. We split the time-to-event data and assigned yearly exposures over a lag window of 8 years. We fitted Cox proportional hazard models with time-varying exposure controlling for contextual- and individual-level factors, as well as trends. In secondary analyses, we inspected the lag structure using distributed lag models and compared results with alternative exposure sources and definitions.

Results: In fully adjusted models, an increase of 10 μg/m³ in PM 2.5 was associated with hazard ratios of 1.27 (95% confidence interval: 1.06, 1.53) for all-cause, 1.24 (1.03, 1.50) for nonaccidental, 2.07 (1.04, 4.10) for respiratory, and 1.66 (0.86, 3.19) for lung cancer mortality. We found no evidence of association with cardiovascular deaths (hazard ratio = 0.88, 95% confidence interval: 0.59, 1.31). We identified strong confounding by both contextual- and individual-level lifestyle factors. The distributed lag analysis suggested differences in relevant exposure windows across mortality causes. Using more informative exposure summaries and sources resulted in higher risk estimates.

Conclusions: We found associations of long-term PM 2.5 exposure with all-cause, nonaccidental, respiratory, and lung cancer mortality, but not with cardiovascular mortality. This study benefits from finely reconstructed time-varying exposures and extensive control for confounding, further supporting a plausible causal link between long-term PM 2.5 and mortality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境 PM2.5 时变暴露与死亡率之间的长期关联:英国生物库分析。
背景:有关 PM2.5 导致长期死亡风险的证据大多来自大型行政研究,这些研究的个体信息不完整,暴露定义也有限。在此,我们利用混杂因素和暴露的详细信息,评估了英国生物库队列中 PM2.5 与死亡率的关联:方法:我们将住宅数据与时空机器学习模型得出的高分辨率 PM2.5 浓度联系起来,重建了 498,090 名受试者的详细暴露历史。我们拆分了时间到事件的数据,并在 8 年的滞后窗口内分配了每年的暴露量。我们利用控制环境和个人水平因素以及趋势的时变暴露的 Cox 比例危险模型进行了拟合。在二次分析中,我们使用分布式滞后模型检查了滞后结构,并将结果与其他暴露源和定义进行了比较:在完全调整模型中,PM2.5每增加10微克/立方米,全因死亡率的危险比(HRs)为1.27(95%CI:1.06-1.53),非事故死亡率的危险比(HRs)为1.24(1.03-1.50),呼吸系统死亡率的危险比(HRs)为2.07(1.04-4.10),肺癌死亡率的危险比(HRs)为1.66(0.86-3.19)。我们没有发现与心血管死亡相关的证据(HR=0.88,95%CI:0.59-1.31)。我们发现,环境和个人层面的生活方式因素都有很大的混杂性。分布式滞后分析表明,不同死亡原因的相关暴露窗口存在差异。使用信息量更大的暴露摘要和来源可获得更高的风险估计值:我们发现长期 PM2.5 暴露与全因、非意外、呼吸系统和肺癌死亡率有关,但与心血管死亡率无关。这项研究得益于对时变暴露的精细重建和对混杂因素的广泛控制,进一步支持了长期 PM2.5 与死亡率之间似是而非的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
期刊最新文献
Socioeconomic Status, Smoking, and Lung Cancer: Mediation and Bias Analysis in the SYNERGY Study. Low-level PM 2.5 Exposure, Cardiovascular and Nonaccidental Mortality, and Related Health Disparities in 12 US States. Influenza Activity and Preterm Birth in the Atlanta Metropolitan Area: A Time-Series Analysis from 2010 to 2017. Parameterization of Beta Distributions for Bias Parameters of Binary Exposure Misclassification in Probabilistic Bias Analysis. Back to Basics: What Descriptive Epidemiology Can Teach Us About the Recent Rise in Firearm Homicide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1