Md Shafiujjaman, Shankar Chandra Mandal, Mohammad Moniruzzaman, Md Habibullah-Al-Mamun, Md Aftab Ali Shaikh, Kozo Watanabe, Anwar Hossain
{"title":"Environmental and human health risk of potentially toxic metals in freshwater and brackish water Nile tilapia (Oreochromis niloticus) aquaculture.","authors":"Md Shafiujjaman, Shankar Chandra Mandal, Mohammad Moniruzzaman, Md Habibullah-Al-Mamun, Md Aftab Ali Shaikh, Kozo Watanabe, Anwar Hossain","doi":"10.1007/s10653-024-02249-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tilapia aquaculture is rapidly expanding worldwide, particularly in Bangladesh. However, metal pollution in aquaculture presents significant environmental and human health risks. This study aimed to evaluate the concentrations of 13 potentially toxic metals (As, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Mn, Se, and Zn) in Nile tilapia (Oreochromis niloticus), surface water, and sediment from freshwater and brackish water aquaculture ponds. The study also assessed the associated environmental and human health risks. Samples of tilapia, water, and sediment were collected between October and November 2021 and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The estimated daily intake (EDI) of As, Cr, Pb, Se, and Zn in tilapia muscle of both freshwater and brackish water, as well as Cd and Ni in brackish water, exceeded recommended EDI values. The Target Hazard Quotient (THQ) was less than 1 for most metals, except for As in brackish water tilapia and Cr in both freshwater and brackish water tilapia, indicating potential health risks. The Target Cancer Risk (TR) values for As in both freshwater and brackish water tilapia, and for Cr and Ni in freshwater tilapia, exceeded acceptable ranges. While the concentrations of metals in surface water of both freshwater and brackish water tilapia farms varied, all mean concentrations were below WHO recommended limits. The contamination factor (C<sub>f</sub>) values were less than 1 for all metals in both types of aquaculture ponds, except for Zn in freshwater sediment and Se in brackish water sediment. Additionally, the calculated risk indices including the Pollution Load Index (PLI), Geoaccumulation Index (I<sub>geo</sub>), Ecological Risk Factor (E<sub>r</sub>), and Potential Ecological Risk Factor (PER) for sediment were below the risk thresholds values (PLI < 1, I<sub>geo</sub> < 0, E<sub>r</sub> < 40, and PER < 150). The significant positive correlations were found between tilapia muscle and the sediment of the respective ponds for arsenic (As) (ρ= 0.8, p<0.002) and Cr (ρ= 0.7, p<0.02). Although the levels of studied metals in water and sediment from freshwater and brackish water aquaculture ponds were generally within recommended guidelines, this study underscores the need for continuous monitoring and preventative measures, particularly to address elevated levels of As and Cr in tilapia muscle, which may pose potential risks to human health.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"477"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02249-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tilapia aquaculture is rapidly expanding worldwide, particularly in Bangladesh. However, metal pollution in aquaculture presents significant environmental and human health risks. This study aimed to evaluate the concentrations of 13 potentially toxic metals (As, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Mn, Se, and Zn) in Nile tilapia (Oreochromis niloticus), surface water, and sediment from freshwater and brackish water aquaculture ponds. The study also assessed the associated environmental and human health risks. Samples of tilapia, water, and sediment were collected between October and November 2021 and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The estimated daily intake (EDI) of As, Cr, Pb, Se, and Zn in tilapia muscle of both freshwater and brackish water, as well as Cd and Ni in brackish water, exceeded recommended EDI values. The Target Hazard Quotient (THQ) was less than 1 for most metals, except for As in brackish water tilapia and Cr in both freshwater and brackish water tilapia, indicating potential health risks. The Target Cancer Risk (TR) values for As in both freshwater and brackish water tilapia, and for Cr and Ni in freshwater tilapia, exceeded acceptable ranges. While the concentrations of metals in surface water of both freshwater and brackish water tilapia farms varied, all mean concentrations were below WHO recommended limits. The contamination factor (Cf) values were less than 1 for all metals in both types of aquaculture ponds, except for Zn in freshwater sediment and Se in brackish water sediment. Additionally, the calculated risk indices including the Pollution Load Index (PLI), Geoaccumulation Index (Igeo), Ecological Risk Factor (Er), and Potential Ecological Risk Factor (PER) for sediment were below the risk thresholds values (PLI < 1, Igeo < 0, Er < 40, and PER < 150). The significant positive correlations were found between tilapia muscle and the sediment of the respective ponds for arsenic (As) (ρ= 0.8, p<0.002) and Cr (ρ= 0.7, p<0.02). Although the levels of studied metals in water and sediment from freshwater and brackish water aquaculture ponds were generally within recommended guidelines, this study underscores the need for continuous monitoring and preventative measures, particularly to address elevated levels of As and Cr in tilapia muscle, which may pose potential risks to human health.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.