Study on the adsorption of phosphate by composite biochar of phosphogypsum and rape straw.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-10-14 DOI:10.1007/s10653-024-02253-3
Yu Liang, Fengyu Li, Qin Li, Dongsheng He
{"title":"Study on the adsorption of phosphate by composite biochar of phosphogypsum and rape straw.","authors":"Yu Liang, Fengyu Li, Qin Li, Dongsheng He","doi":"10.1007/s10653-024-02253-3","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater containing phosphorus is often added by industrial activities, which is bad for the environment. In this study, composite biochar (PG-RS700) was prepared from phosphogypsum (PG) and rape straw (RS) for the treatment of phosphate in wastewater. SEM, FTIR, XRD and XPS characterization results showed that PG and RS were successfully combined. When PG-RS700 was dosed at 1.5 g/L and the phosphate solution concentration was 50 mg/L and pH = 8, the phosphate removal rate was 100% and the adsorption capacity was three times higher than the corresponding pure PG and RS. The quasi-secondary kinetic model indicated that the adsorption mechanism was chemisorption, and the maximum adsorption capacity for phosphate in the Langmuir isotherm model was 102.25 mg/g. Through pot experiment, the phosphorus adsorbed material obviously promoted the growth of plants. PG-RS700 can be used as a powerful adsorbent to treat phosphate in water and return it to soil as phosphate fertilizer.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"472"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02253-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater containing phosphorus is often added by industrial activities, which is bad for the environment. In this study, composite biochar (PG-RS700) was prepared from phosphogypsum (PG) and rape straw (RS) for the treatment of phosphate in wastewater. SEM, FTIR, XRD and XPS characterization results showed that PG and RS were successfully combined. When PG-RS700 was dosed at 1.5 g/L and the phosphate solution concentration was 50 mg/L and pH = 8, the phosphate removal rate was 100% and the adsorption capacity was three times higher than the corresponding pure PG and RS. The quasi-secondary kinetic model indicated that the adsorption mechanism was chemisorption, and the maximum adsorption capacity for phosphate in the Langmuir isotherm model was 102.25 mg/g. Through pot experiment, the phosphorus adsorbed material obviously promoted the growth of plants. PG-RS700 can be used as a powerful adsorbent to treat phosphate in water and return it to soil as phosphate fertilizer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷石膏和油菜秸秆的复合生物炭对磷酸盐的吸附研究。
含磷废水通常由工业活动添加,对环境有害。本研究利用磷石膏(PG)和油菜秸秆(RS)制备了复合生物炭(PG-RS700),用于处理废水中的磷酸盐。扫描电镜、傅立叶变换红外光谱、XRD 和 XPS 表征结果表明,PG 和 RS 成功地结合在一起。当 PG-RS700 的投加量为 1.5 g/L、磷酸盐溶液浓度为 50 mg/L、pH = 8 时,磷酸盐去除率为 100%,吸附容量是相应的纯 PG 和 RS 的三倍。准二级动力学模型表明其吸附机理为化学吸附,Langmuir 等温线模型对磷酸盐的最大吸附量为 102.25 mg/g。通过盆栽实验,磷吸附材料明显促进了植物的生长。PG-RS700 可作为一种强力吸附剂处理水中的磷酸盐,并将其作为磷肥返回土壤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Distribution, assessment, and causality analysis of soil heavy metals pollution in complex contaminated sites: a case study of a chemical plant. Hydrochemical characteristics, cross-layer pollution and environmental health risk of groundwater system in coal mine area: a case study of Jiangzhuang coal mine. Environmental microplastic and phthalate esters co-contamination, interrelationships, co-toxicity and mechanisms. A review. Cultivable bacteria contribute to the removal of diclofenac and naproxen mix in a constructed wetland with Typha latifolia. Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1