Jie Cheng , Ding Wang , Ming Geng , Yuying Zheng , Yi Cao , Shurong Liu , Jiansong Zhang , Jialong Yang , Xiumei Wei
{"title":"Transcription factor networks drive perforin activity in the anti-bacterial immune response of tilapia","authors":"Jie Cheng , Ding Wang , Ming Geng , Yuying Zheng , Yi Cao , Shurong Liu , Jiansong Zhang , Jialong Yang , Xiumei Wei","doi":"10.1016/j.fsi.2024.109975","DOIUrl":null,"url":null,"abstract":"<div><div>Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (<em>Oreochromis niloticus</em>) as a model, we investigated the characteristics of perforin in early vertebrates. <em>Oreochromis niloticus</em> perforin (<em>OnPRF</em>) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. <em>OnPRF</em> was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation <em>in vitro</em> at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with <em>Edwardsiella piscicida</em> and <em>Aeromonas hydrophila</em>, the mRNA and protein levels of <em>OnPRF</em> were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of <em>OnPRF</em>, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of <em>OnPRF</em> in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"154 ","pages":"Article 109975"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105046482400620X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Perforin, produced by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), is one of the effectors of cell-mediated cytotoxicity (CMC) in vertebrates, playing a paramount role in killing target cells. However, whether and how perforin is involved in adaptive immune responses in early vertebrates remains unclear. Using Nile tilapia (Oreochromis niloticus) as a model, we investigated the characteristics of perforin in early vertebrates. Oreochromis niloticus perforin (OnPRF) possesses 2 conserved functional domains, membrane attack complex/perforin (MACPF) and protein kinase C conserved region 2 (C2) domains, although they share low amino acid sequence similarity with other homologs. OnPRF was widely expressed in various immune tissues and could respond to lymphocyte activation and T-cell activation in vitro at both the transcriptional and protein levels, indicating that it may be involved in adaptive immune responses. Furthermore, after infection with Edwardsiella piscicida and Aeromonas hydrophila, the mRNA and protein levels of OnPRF were significantly up-regulated within the adaptive immune response period. Additionally, we revealed that many transcription factors were involved in the transcriptional regulation of OnPRF, including p65, c-Fos, c-Jun, STAT1 and STAT4, and there was a synergy among these transcription factors. Overall, these findings demonstrate the involvement of OnPRF in T-cell activation and adaptive immune response in tilapia, thus providing new evidence for comprehending the evolution of immune response in early vertebrates.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.