Hai Chi, Linxia Sun, Na Li, Yue Zhan, Jinqu Guo, Lei Lei, David M Irwin, Guang Yang, Shixia Xu, Yang Liu
{"title":"Parallel Spectral Tuning of a Cone Visual Pigment Provides Evidence for Ancient Deep-Sea Adaptations in Cetaceans.","authors":"Hai Chi, Linxia Sun, Na Li, Yue Zhan, Jinqu Guo, Lei Lei, David M Irwin, Guang Yang, Shixia Xu, Yang Liu","doi":"10.1093/gbe/evae223","DOIUrl":null,"url":null,"abstract":"<p><p>Dichromatic color vision is mediated by two cone visual pigments in many eutherian mammals. After reentry into the sea, early cetaceans lost their violet-sensitive visual pigment (short wavelength-sensitive 1) independently in the baleen and toothed whale ancestors and thus obtained only monochromatic cone vision. Subsequently, losses of the middle/long wavelength-sensitive (M/LWS) pigment have also been reported in multiple whale lineages, leading to rhodopsin (RH1)-mediated rod monochromatic vision. To further elucidate the phenotypic evolution of whale visual pigments, we assessed the spectral tuning of both M/LWS and RH1 from representative cetacean taxa. Interestingly, although the coding sequences for M/LWS are intact in both the pygmy right whale and the Baird's beaked whale, no spectral sensitivity was detected in vitro. Pseudogenization of other cone vision-related genes is observed in the pygmy right whale, suggesting a loss of cone-mediated vision. After ancestral sequence reconstructions, ancient M/LWS pigments from cetacean ancestors were resurrected and functionally measured. Spectral tuning of M/LWS from the baleen whale ancestor shows that it is green sensitive, with a 40-nm shift in sensitivity to a shorter wavelength. For the ancestor of sperm whales, although no spectral sensitivity could be recorded for its M/LWS pigment, a substantial sensitivity shift (20 to 30 nm) to a shorter wavelength may have also occurred before its functional inactivation. The parallel phenotypic evolution of M/LWS to shorter wavelength sensitivity might be visual adaptations in whales allowing more frequent deep-sea activities, although additional ecological differentiations may have led to their subsequent losses.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae223","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dichromatic color vision is mediated by two cone visual pigments in many eutherian mammals. After reentry into the sea, early cetaceans lost their violet-sensitive visual pigment (short wavelength-sensitive 1) independently in the baleen and toothed whale ancestors and thus obtained only monochromatic cone vision. Subsequently, losses of the middle/long wavelength-sensitive (M/LWS) pigment have also been reported in multiple whale lineages, leading to rhodopsin (RH1)-mediated rod monochromatic vision. To further elucidate the phenotypic evolution of whale visual pigments, we assessed the spectral tuning of both M/LWS and RH1 from representative cetacean taxa. Interestingly, although the coding sequences for M/LWS are intact in both the pygmy right whale and the Baird's beaked whale, no spectral sensitivity was detected in vitro. Pseudogenization of other cone vision-related genes is observed in the pygmy right whale, suggesting a loss of cone-mediated vision. After ancestral sequence reconstructions, ancient M/LWS pigments from cetacean ancestors were resurrected and functionally measured. Spectral tuning of M/LWS from the baleen whale ancestor shows that it is green sensitive, with a 40-nm shift in sensitivity to a shorter wavelength. For the ancestor of sperm whales, although no spectral sensitivity could be recorded for its M/LWS pigment, a substantial sensitivity shift (20 to 30 nm) to a shorter wavelength may have also occurred before its functional inactivation. The parallel phenotypic evolution of M/LWS to shorter wavelength sensitivity might be visual adaptations in whales allowing more frequent deep-sea activities, although additional ecological differentiations may have led to their subsequent losses.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.