{"title":"The melatonin-FTO-ATF4 signaling pathway protects granulosa cells from cisplatin-induced chemotherapeutic toxicity by suppressing ferroptosis.","authors":"Rongli Wang, Jing Geng","doi":"10.1007/s10815-024-03276-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In cisplatin-induced premature ovarian failure (POF) mice, granulosa cells showed a high level of ferroptosis. Previous research has indicated that the fat mass and obesity-associated protein/activating transcription factor 4 (FTO/ATF4) axis was involved in the regulation of ferroptosis. The purpose of this study was to explore the role of the FTO/ATF4 axis in cisplatin-induced ferroptosis in granulosa cell.</p><p><strong>Methods: </strong>The extent of ferroptosis was assessed by transmission electron microscopy (TEM) and ROS, GPX, GSH, and MDA assays. Western blotting was used to evaluate the protein expression levels of ferroptosis-related molecules. Ferroptosis activator and inhibitor were also used.</p><p><strong>Results: </strong>We found that ferroptosis increased in a concentration-dependent manner in cisplatin-induced injured granulosa cells, accompanied by the downregulation of FTO. In addition, gain- and loss-of-function studies showed that FTO affects ferroptosis in injured cells by regulating ATF4 expression. Ferrostatin-1 inhibited the effect of FTO downregulation on injured granulosa cells ferroptosis, and erastin reversed the protective effect of FTO on ferroptosis in injured granulosa cells. Finally, melatonin was used, and we found that melatonin reduced ferroptosis in cisplatin-induced injured granulosa cells by upregulating FTO expression.</p><p><strong>Conclusion: </strong>Our study demonstrated that cisplatin induced granulosa cell ferroptosis by downregulating the expression of FTO. ATF4 was identified as a downstream target of FTO, and overexpression of ATF4 reversed the effects of decreased FTO on ferroptosis. Additionally, melatonin mitigates the cytotoxic effects of cisplatin by upregulating FTO expression. The melatonin-FTO-ATF4 signaling pathway plays a vital role in the treatment of cisplatin-induced POF.</p>","PeriodicalId":15246,"journal":{"name":"Journal of Assisted Reproduction and Genetics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Assisted Reproduction and Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-024-03276-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In cisplatin-induced premature ovarian failure (POF) mice, granulosa cells showed a high level of ferroptosis. Previous research has indicated that the fat mass and obesity-associated protein/activating transcription factor 4 (FTO/ATF4) axis was involved in the regulation of ferroptosis. The purpose of this study was to explore the role of the FTO/ATF4 axis in cisplatin-induced ferroptosis in granulosa cell.
Methods: The extent of ferroptosis was assessed by transmission electron microscopy (TEM) and ROS, GPX, GSH, and MDA assays. Western blotting was used to evaluate the protein expression levels of ferroptosis-related molecules. Ferroptosis activator and inhibitor were also used.
Results: We found that ferroptosis increased in a concentration-dependent manner in cisplatin-induced injured granulosa cells, accompanied by the downregulation of FTO. In addition, gain- and loss-of-function studies showed that FTO affects ferroptosis in injured cells by regulating ATF4 expression. Ferrostatin-1 inhibited the effect of FTO downregulation on injured granulosa cells ferroptosis, and erastin reversed the protective effect of FTO on ferroptosis in injured granulosa cells. Finally, melatonin was used, and we found that melatonin reduced ferroptosis in cisplatin-induced injured granulosa cells by upregulating FTO expression.
Conclusion: Our study demonstrated that cisplatin induced granulosa cell ferroptosis by downregulating the expression of FTO. ATF4 was identified as a downstream target of FTO, and overexpression of ATF4 reversed the effects of decreased FTO on ferroptosis. Additionally, melatonin mitigates the cytotoxic effects of cisplatin by upregulating FTO expression. The melatonin-FTO-ATF4 signaling pathway plays a vital role in the treatment of cisplatin-induced POF.
期刊介绍:
The Journal of Assisted Reproduction and Genetics publishes cellular, molecular, genetic, and epigenetic discoveries advancing our understanding of the biology and underlying mechanisms from gametogenesis to offspring health. Special emphasis is placed on the practice and evolution of assisted reproduction technologies (ARTs) with reference to the diagnosis and management of diseases affecting fertility. Our goal is to educate our readership in the translation of basic and clinical discoveries made from human or relevant animal models to the safe and efficacious practice of human ARTs. The scientific rigor and ethical standards embraced by the JARG editorial team ensures a broad international base of expertise guiding the marriage of contemporary clinical research paradigms with basic science discovery. JARG publishes original papers, minireviews, case reports, and opinion pieces often combined into special topic issues that will educate clinicians and scientists with interests in the mechanisms of human development that bear on the treatment of infertility and emerging innovations in human ARTs. The guiding principles of male and female reproductive health impacting pre- and post-conceptional viability and developmental potential are emphasized within the purview of human reproductive health in current and future generations of our species.
The journal is published in cooperation with the American Society for Reproductive Medicine, an organization of more than 8,000 physicians, researchers, nurses, technicians and other professionals dedicated to advancing knowledge and expertise in reproductive biology.