Yindi Xiong, Taiyu Shen, Peng Lou, Jingyue Yang, John P Kastelic, Jingping Liu, Chuang Xu, Bo Han, Jian Gao
{"title":"Colostrum-derived extracellular vesicles: potential multifunctional nanomedicine for alleviating mastitis.","authors":"Yindi Xiong, Taiyu Shen, Peng Lou, Jingyue Yang, John P Kastelic, Jingping Liu, Chuang Xu, Bo Han, Jian Gao","doi":"10.1186/s12951-024-02926-2","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine mastitis is an infectious disease that causes substantial economic losses to the dairy industry worldwide. Current antibiotic therapy faces issues of antibiotic misuse and antimicrobial resistance, which has aroused concerns for both veterinary and human medicine. Thus, this study explored the potential of Colo EVs (bovine colostrum-derived extracellular vesicles) to address mastitis. Using LPS-induced murine mammary epithelial cells (HC11), mouse monocyte macrophages (RAW 264.7), and a murine mastitis model with BALB/C mice, we evaluated the safety and efficacy of Colo EVs, in vivo and in vitro. Colo EVs had favorable biosafety profiles, promoting cell proliferation and migration without inducing pathological changes after injection into murine mammary glands. In LPS-induced murine mastitis, Colo EVs significantly reduced inflammation, improved inflammatory scores, and preserved tight junction proteins while protecting milk production. Additionally, in vitro experiments demonstrated that Colo EVs downregulated inflammatory cytokine expression, reduced inflammatory markers, and attenuated NF-κB pathway activation. In summary, we inferred that Colo EVs have promise as a therapeutic approach for mastitis treatment, owing to their anti-inflammatory properties, potentially mediated through the NF-κB signaling pathway modulation.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"627"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02926-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bovine mastitis is an infectious disease that causes substantial economic losses to the dairy industry worldwide. Current antibiotic therapy faces issues of antibiotic misuse and antimicrobial resistance, which has aroused concerns for both veterinary and human medicine. Thus, this study explored the potential of Colo EVs (bovine colostrum-derived extracellular vesicles) to address mastitis. Using LPS-induced murine mammary epithelial cells (HC11), mouse monocyte macrophages (RAW 264.7), and a murine mastitis model with BALB/C mice, we evaluated the safety and efficacy of Colo EVs, in vivo and in vitro. Colo EVs had favorable biosafety profiles, promoting cell proliferation and migration without inducing pathological changes after injection into murine mammary glands. In LPS-induced murine mastitis, Colo EVs significantly reduced inflammation, improved inflammatory scores, and preserved tight junction proteins while protecting milk production. Additionally, in vitro experiments demonstrated that Colo EVs downregulated inflammatory cytokine expression, reduced inflammatory markers, and attenuated NF-κB pathway activation. In summary, we inferred that Colo EVs have promise as a therapeutic approach for mastitis treatment, owing to their anti-inflammatory properties, potentially mediated through the NF-κB signaling pathway modulation.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.