Iron chelators loaded on myocardiocyte mitochondria-targeted nanozyme system for treating myocardial ischemia-reperfusion injury in mouse models.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-02-15 DOI:10.1186/s12951-025-03197-1
Ke Zhu, Kun Wang, Rongting Zhang, Ziyang Zhu, Wenyuan Wang, Biao Yang, Jun Zhao, Yunli Shen
{"title":"Iron chelators loaded on myocardiocyte mitochondria-targeted nanozyme system for treating myocardial ischemia-reperfusion injury in mouse models.","authors":"Ke Zhu, Kun Wang, Rongting Zhang, Ziyang Zhu, Wenyuan Wang, Biao Yang, Jun Zhao, Yunli Shen","doi":"10.1186/s12951-025-03197-1","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis plays a critical role in myocardial ischemia-reperfusion injury (MIRI), posing a significant clinical challenge. Nanoenzymes like cerium oxide (CeO<sub>2</sub>) hold promise for mitigating oxidative damage and inhibiting ferroptosis, but their delivery efficiency and biological activity require optimization. This study aims to develop a targeted nanozyme delivery system for MIRI treatment by integrating CeO<sub>2</sub> with mesoporous polydopamine (mPDA) and dexrazoxane (DXZ) to achieve synergistic therapeutic effects. A biomineralization technique was used to synthesize CeO<sub>2</sub> nanoparticles (2-3 nm) within mPDA, forming ~ 130 nm composite nanoparticles (Ce@mPDA). Surface modifications with cardiac homing peptide (CHP) and triphenylphosphine (TPP) enabled hierarchical targeting to injured myocardium and mitochondria. DXZ-loaded Ce@mPDA-C/P nanoparticles (D/Ce@mPDA-C/P) were evaluated in vitro and in a MIRI mouse model for their effects on oxidative stress, ferroptosis, apoptosis, inflammation, and cardiac function. D/Ce@mPDA-C/P nanoparticles exhibited robust ROS scavenging, sustained DXZ release, and efficient myocardial and mitochondrial targeting. The D/Ce@mPDA-C/P system significantly reduced oxidative stress, upregulated GPX4 expression, inhibited ferroptosis, and modulated the inflammatory microenvironment. Long-term studies in a MIRI mouse model demonstrated reductions in myocardial fibrosis and improvements in cardiac function, including enhanced fractional shortening and ejection fraction. This hierarchical targeting delivery system effectively combines the antioxidant properties of CeO<sub>2</sub> with the iron-chelating effects of DXZ, providing a promising therapeutic strategy for MIRI. This approach may expand the clinical use of DXZ and advance nanomedicine-based interventions for myocardial repair.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"112"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03197-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis plays a critical role in myocardial ischemia-reperfusion injury (MIRI), posing a significant clinical challenge. Nanoenzymes like cerium oxide (CeO2) hold promise for mitigating oxidative damage and inhibiting ferroptosis, but their delivery efficiency and biological activity require optimization. This study aims to develop a targeted nanozyme delivery system for MIRI treatment by integrating CeO2 with mesoporous polydopamine (mPDA) and dexrazoxane (DXZ) to achieve synergistic therapeutic effects. A biomineralization technique was used to synthesize CeO2 nanoparticles (2-3 nm) within mPDA, forming ~ 130 nm composite nanoparticles (Ce@mPDA). Surface modifications with cardiac homing peptide (CHP) and triphenylphosphine (TPP) enabled hierarchical targeting to injured myocardium and mitochondria. DXZ-loaded Ce@mPDA-C/P nanoparticles (D/Ce@mPDA-C/P) were evaluated in vitro and in a MIRI mouse model for their effects on oxidative stress, ferroptosis, apoptosis, inflammation, and cardiac function. D/Ce@mPDA-C/P nanoparticles exhibited robust ROS scavenging, sustained DXZ release, and efficient myocardial and mitochondrial targeting. The D/Ce@mPDA-C/P system significantly reduced oxidative stress, upregulated GPX4 expression, inhibited ferroptosis, and modulated the inflammatory microenvironment. Long-term studies in a MIRI mouse model demonstrated reductions in myocardial fibrosis and improvements in cardiac function, including enhanced fractional shortening and ejection fraction. This hierarchical targeting delivery system effectively combines the antioxidant properties of CeO2 with the iron-chelating effects of DXZ, providing a promising therapeutic strategy for MIRI. This approach may expand the clinical use of DXZ and advance nanomedicine-based interventions for myocardial repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁蛋白沉积在心肌缺血再灌注损伤(MIRI)中起着关键作用,给临床带来了重大挑战。氧化铈(CeO2)等纳米酶有望减轻氧化损伤并抑制铁跃迁,但其输送效率和生物活性需要优化。本研究旨在通过将 CeO2 与介孔多巴胺(mPDA)和右雷佐辛(DXZ)整合,开发一种用于 MIRI 治疗的靶向纳米酶递送系统,以实现协同治疗效果。利用生物矿化技术在介孔多巴胺中合成了CeO2纳米颗粒(2-3纳米),形成了约130纳米的复合纳米颗粒(Ce@mPDA)。利用心脏归巢肽(CHP)和三苯基膦(TPP)对其表面进行修饰,可分层靶向损伤的心肌和线粒体。在体外和 MIRI 小鼠模型中评估了 DXZ 负载 Ce@mPDA-C/P 纳米粒子(D/Ce@mPDA-C/P)对氧化应激、铁凋亡、细胞凋亡、炎症和心脏功能的影响。D/Ce@mPDA-C/P纳米颗粒表现出强大的ROS清除能力、持续的DXZ释放能力以及高效的心肌和线粒体靶向性。D/Ce@mPDA-C/P系统能显著降低氧化应激,上调GPX4的表达,抑制铁变态反应,并调节炎症微环境。在 MIRI 小鼠模型中进行的长期研究表明,心肌纤维化减轻,心脏功能得到改善,包括缩短率和射血分数提高。这种分层靶向递送系统有效地结合了 CeO2 的抗氧化特性和 DXZ 的螯合铁效应,为 MIRI 提供了一种前景广阔的治疗策略。这种方法可能会扩大 DXZ 的临床应用,并推进基于纳米药物的心肌修复干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Inflammatory memory-activated biomimetic nanovesicles regulate neutrophil plasticity and metabolic reprogramming for rapid diabetic wound healing via targeting miR-193a-5p/TLR4/JNK/P38 MAPK pathways. Intraperitoneal administration of mRNA encoding interleukin-12 for immunotherapy in peritoneal carcinomatosis. RGD hydrogel-loaded ADSC extracellular vesicles mitigate uranium-induced renal injury via TLR4/NF-κB pathway inhibition. Iron chelators loaded on myocardiocyte mitochondria-targeted nanozyme system for treating myocardial ischemia-reperfusion injury in mouse models. Production of minicell-like structures by Escherichia coli biosynthesizing cadmium fluorescent nanoparticles: a novel response to heavy metal exposure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1