Tight-binding model of Pt-based jacutingaites as combination of the honeycomb and kagome lattices.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-10-30 DOI:10.1088/1361-648X/ad8853
G Santos-Castro, L K Teles, I Guilhon Mitoso, J M Pereira
{"title":"Tight-binding model of Pt-based jacutingaites as combination of the honeycomb and kagome lattices.","authors":"G Santos-Castro, L K Teles, I Guilhon Mitoso, J M Pereira","doi":"10.1088/1361-648X/ad8853","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a refined tight-binding (TB) model for Pt-based jacutingaite materialsPt2NX3, (N= Zn, Cd, Hg; X = S, Se, Te), offering a detailed representation of the low-energy physics of its monolayers. This model incorporates all elements with significant spin-orbit coupling contributions, which are essential for understanding the topological energy gaps in these materials. Through comparison with first-principles calculations, we meticulously fitted the TB parameters, ensuring an accurate depiction of the energy bands near the Fermi level. Our model reveals the intricate interplay between the Pt 3<i>e</i>and<i>N</i>metal orbitals, forming distinct kagome and honeycomb lattice structures. Applying this model, we explore the edge states of Pt-based jacutingaite monolayer nanoribbons, highlighting the sensitivity of the topological edge states dispersion bands to the nanostructures geometric configurations. These insights not only deepen our understanding of jacutingaite materials but also assist in tailoring their electronic properties for future applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad8853","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a refined tight-binding (TB) model for Pt-based jacutingaite materialsPt2NX3, (N= Zn, Cd, Hg; X = S, Se, Te), offering a detailed representation of the low-energy physics of its monolayers. This model incorporates all elements with significant spin-orbit coupling contributions, which are essential for understanding the topological energy gaps in these materials. Through comparison with first-principles calculations, we meticulously fitted the TB parameters, ensuring an accurate depiction of the energy bands near the Fermi level. Our model reveals the intricate interplay between the Pt 3eandNmetal orbitals, forming distinct kagome and honeycomb lattice structures. Applying this model, we explore the edge states of Pt-based jacutingaite monolayer nanoribbons, highlighting the sensitivity of the topological edge states dispersion bands to the nanostructures geometric configurations. These insights not only deepen our understanding of jacutingaite materials but also assist in tailoring their electronic properties for future applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铂基贾库泰特的紧密结合模型--蜂巢晶格与卡戈米晶格的结合。
我们介绍了铂基巨晶石材料 Pt2NX3(N= Zn、Cd、Hg;X= S、Se、Te)的精炼紧密结合(TB)模型,详细介绍了其单层的低能物理学。该模型包含了所有具有显著自旋轨道耦合贡献的元素,这对理解这些材料的拓扑能隙至关重要。通过与第一原理计算的比较,我们对 TB 参数进行了细致的拟合,确保准确描绘费米级附近的能带。我们的模型揭示了 Pt3e 和 Nmetal 轨道之间错综复杂的相互作用,形成了截然不同的卡戈米和蜂巢晶格结构。应用这一模型,我们探索了铂基玉晶铂单层纳米带的边缘态,凸显了拓扑边缘态色散带对纳米结构几何构型的敏感性。这些见解不仅加深了我们对金刚石材料的理解,还有助于为未来应用定制其电子特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Phase behavior and atomic dynamics in RbxNa1-x: insights from machine learning interatomic potentials based onab initiomolecular dynamics. Electromagnetically tunable spin-valley-polarized current via anomalous Nernst effect in monolayer of jacutingaite. Enhanced energy storage performance in BaZrxTi1-xO3lead-free ferroelectrics near phase transitions. Interface phonon transport in nanomaterials: numerical methods and modulation strategies. Superconducting energy gap structure of CsV3Sb5from magnetic penetration depth measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1