A measles virus collective infectious unit that caused lethal human brain disease includes many locally restricted and few widespread copy-back defective genomes.
Biruhalem Taye, Iris Yousaf, Chanakha K Navaratnarajah, Declan C Schroeder, Christian K Pfaller, Roberto Cattaneo
{"title":"A measles virus collective infectious unit that caused lethal human brain disease includes many locally restricted and few widespread copy-back defective genomes.","authors":"Biruhalem Taye, Iris Yousaf, Chanakha K Navaratnarajah, Declan C Schroeder, Christian K Pfaller, Roberto Cattaneo","doi":"10.1128/jvi.01232-24","DOIUrl":null,"url":null,"abstract":"<p><p>During virus replication in cultured cells, copy-back defective viral genomes (cbDVGs) can arise. CbDVGs are powerful inducers of innate immune responses <i>in vitro</i>, but their occurrence and impact on natural infections of human hosts remain poorly defined. We asked whether cbDVGs were generated in the brain of a patient who succumbed to subacute sclerosing panencephalitis (SSPE) about 20 years after acute measles virus (MeV) infection. Previous analyses of 13 brain specimens of this patient indicated that a collective infectious unit (CIU) drove lethal MeV spread. In this study, we identified 276 replication-competent cbDVG species, each present in over 100 copies in the brain. Six species were detected in multiple forebrain locations, implying that they travelled long-distance with the CIU. The cbDVG to full-length genomes ratio was often close to 1 (0.6-1.74). Most cbDVGs were 324-2,000 bases in length, corresponding to 2%-12% of the full-length genome; all are predicted to have complementary terminal sequences. If improperly encapsidated, these sequences have the potential to form double-stranded structures that can induce innate immune responses. To assess this, we examined the transcriptome of all brain specimens. Several interferon and inflammatory response genes were upregulated, but upregulation levels did not correlate with cbDVG levels in the specimens. Thus, the CIU that drove MeV pathogenesis in this brain includes, in addition to two complementary full-length genome populations, many locally restricted and few widespread cbDVG species. The widespread cbDVG species may have been positively selected but how they impacted pathogenesis remains to be determined.IMPORTANCECopy-back defective viral genomes (cbDVGs) can drive virus-host interactions. They can suppress virus replication directly, by competing with full-length genomes, or indirectly by stimulating antiviral immunity. <i>In vitro</i>, cbDVG can slow down infections and promote persistence, but there is limited documentation of their presence in human hosts or of their impact on disease. We had the unique opportunity to analyze the brain of a patient who succumbed to subacute sclerosing panencephalitis, a rare but lethal consequence of measles. We detected more than 270 distinct cbDVG species; most were restricted to one specimen, but several reached all lobes of the forebrain, suggesting positive selection. Our analyses provide the missing knowledge of the diversity of cbDVG in a natural infection of a human host. They also reveal that a collective infectious unit that caused lethal human brain disease includes few widespread cbDVG, in addition to two ubiquitous complementary full-length genome populations.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0123224"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01232-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During virus replication in cultured cells, copy-back defective viral genomes (cbDVGs) can arise. CbDVGs are powerful inducers of innate immune responses in vitro, but their occurrence and impact on natural infections of human hosts remain poorly defined. We asked whether cbDVGs were generated in the brain of a patient who succumbed to subacute sclerosing panencephalitis (SSPE) about 20 years after acute measles virus (MeV) infection. Previous analyses of 13 brain specimens of this patient indicated that a collective infectious unit (CIU) drove lethal MeV spread. In this study, we identified 276 replication-competent cbDVG species, each present in over 100 copies in the brain. Six species were detected in multiple forebrain locations, implying that they travelled long-distance with the CIU. The cbDVG to full-length genomes ratio was often close to 1 (0.6-1.74). Most cbDVGs were 324-2,000 bases in length, corresponding to 2%-12% of the full-length genome; all are predicted to have complementary terminal sequences. If improperly encapsidated, these sequences have the potential to form double-stranded structures that can induce innate immune responses. To assess this, we examined the transcriptome of all brain specimens. Several interferon and inflammatory response genes were upregulated, but upregulation levels did not correlate with cbDVG levels in the specimens. Thus, the CIU that drove MeV pathogenesis in this brain includes, in addition to two complementary full-length genome populations, many locally restricted and few widespread cbDVG species. The widespread cbDVG species may have been positively selected but how they impacted pathogenesis remains to be determined.IMPORTANCECopy-back defective viral genomes (cbDVGs) can drive virus-host interactions. They can suppress virus replication directly, by competing with full-length genomes, or indirectly by stimulating antiviral immunity. In vitro, cbDVG can slow down infections and promote persistence, but there is limited documentation of their presence in human hosts or of their impact on disease. We had the unique opportunity to analyze the brain of a patient who succumbed to subacute sclerosing panencephalitis, a rare but lethal consequence of measles. We detected more than 270 distinct cbDVG species; most were restricted to one specimen, but several reached all lobes of the forebrain, suggesting positive selection. Our analyses provide the missing knowledge of the diversity of cbDVG in a natural infection of a human host. They also reveal that a collective infectious unit that caused lethal human brain disease includes few widespread cbDVG, in addition to two ubiquitous complementary full-length genome populations.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.