Impact of organic matter constituents on phosphorus recovery from CPR sludges.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2024-10-01 DOI:10.1002/wer.11141
Aseel A Alnimer, D Scott Smith, Wayne J Parker
{"title":"Impact of organic matter constituents on phosphorus recovery from CPR sludges.","authors":"Aseel A Alnimer, D Scott Smith, Wayne J Parker","doi":"10.1002/wer.11141","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the influence of organic matter (OM) constituents on the potential for recovery of P from wastewaters when FeCl<sub>3</sub> treatment is employed for P removal. The presence of OM constituents did not influence P release from Fe-P sludges when alkaline and ascorbic acid treatments were employed. However, the overall recovery of P from wastewater was impacted by the presence of selected OM constituents through the reduction of P uptake during coagulation. The presence of protein and humic matter showed remarkably low P removal values (3.0 ± 0.4% and 23 ± 1% respectively) when compared to an inorganic control recipe (62 ± 2%). Elevated soluble Fe (SFe) residuals in the presence of proteins (87 ± 5%) and humics (51 ± 1%) indicated interactions between Fe(III) cations and negatively charged functional groups like hydroxyl, carboxyl, and phenolic groups available in these organics. Significant negative correlations between P removal and residual SFe were observed suggesting Fe solubilization by OM constituents was the mechanism responsible for reduced P removal. The findings of this study identify, for the first time, the impact of OM constituents on overall P recovery when Fe(III) salts are employed and provide insights into recoveries that can be expected when Fe is added to primary, secondary treated, and industrial wastewaters. PRACTITIONER POINTS: Low P removal values were observed for protein and humic dominated wastewater recipes. Iron(III) solubilization counted for P removal reduction by proteins and humic acids. There is no effect of OM on P release from Fe-P sludge at pH 10 and ascorbic acid treatments. OM and agent employed to release P from sludges affected overall recovery of P.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11141","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the influence of organic matter (OM) constituents on the potential for recovery of P from wastewaters when FeCl3 treatment is employed for P removal. The presence of OM constituents did not influence P release from Fe-P sludges when alkaline and ascorbic acid treatments were employed. However, the overall recovery of P from wastewater was impacted by the presence of selected OM constituents through the reduction of P uptake during coagulation. The presence of protein and humic matter showed remarkably low P removal values (3.0 ± 0.4% and 23 ± 1% respectively) when compared to an inorganic control recipe (62 ± 2%). Elevated soluble Fe (SFe) residuals in the presence of proteins (87 ± 5%) and humics (51 ± 1%) indicated interactions between Fe(III) cations and negatively charged functional groups like hydroxyl, carboxyl, and phenolic groups available in these organics. Significant negative correlations between P removal and residual SFe were observed suggesting Fe solubilization by OM constituents was the mechanism responsible for reduced P removal. The findings of this study identify, for the first time, the impact of OM constituents on overall P recovery when Fe(III) salts are employed and provide insights into recoveries that can be expected when Fe is added to primary, secondary treated, and industrial wastewaters. PRACTITIONER POINTS: Low P removal values were observed for protein and humic dominated wastewater recipes. Iron(III) solubilization counted for P removal reduction by proteins and humic acids. There is no effect of OM on P release from Fe-P sludge at pH 10 and ascorbic acid treatments. OM and agent employed to release P from sludges affected overall recovery of P.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机物成分对 CPR 污泥中磷回收的影响。
本研究评估了在采用三氯化铁(FeCl3)处理去除 P 时,有机物(OM)成分对从废水中回收 P 的潜力的影响。在采用碱性和抗坏血酸处理时,有机物成分的存在不会影响铁-磷淤泥中 P 的释放。然而,由于某些 OM 成分的存在会在混凝过程中减少 P 的吸收,因此会影响废水中 P 的总体回收率。与无机对照配方(62 ± 2%)相比,蛋白质和腐殖质的存在显示出极低的磷去除率(分别为 3.0 ± 0.4% 和 23 ± 1%)。蛋白质(87 ± 5%)和腐殖质(51 ± 1%)存在时,可溶性铁(SFe)残留量升高,这表明铁(III)阳离子与这些有机物中的羟基、羧基和酚基等带负电荷的官能团之间存在相互作用。P 清除率与残留 SFe 之间呈显著负相关,表明有机物成分对铁的溶解是导致 P 清除率降低的机制。这项研究的结果首次确定了在使用铁(III)盐时有机物成分对总体磷回收率的影响,并为在一级、二级处理和工业废水中添加铁时可预期的回收率提供了启示。实践点:蛋白质和腐殖质为主的废水配方对 P 的去除率较低。蛋白质和腐殖酸对铁(III)的增溶作用可减少对 P 的去除。在 pH 值为 10 和抗坏血酸处理条件下,OM 对铁-磷污泥中的 P 释放没有影响。从污泥中释放 P 所使用的 OM 和药剂影响了 P 的总体回收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. Removal of Fe2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. Study on the response mechanisms and evolution prediction of groundwater microbial-toxicological indicators. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. Understanding machine learning predictions of wastewater treatment plant sludge with explainable artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1