Principle, structure and application progress of the forest landscape model FireBGCv2.

Q3 Environmental Science 应用生态学报 Pub Date : 2024-09-18 DOI:10.13287/j.1001-9332.202409.020
Jia Song, Hong-Wei Chen, Zhi-Wei Wu, Xue-Bin Sun
{"title":"Principle, structure and application progress of the forest landscape model FireBGCv2.","authors":"Jia Song, Hong-Wei Chen, Zhi-Wei Wu, Xue-Bin Sun","doi":"10.13287/j.1001-9332.202409.020","DOIUrl":null,"url":null,"abstract":"<p><p>Forest landscape model can quantitatively simulate the spatiotemporal variations in forest structure and function at the landscape scale based on traditional field survey data and mathematical models, providing a reference for the formulation of scientific forest management strategies. FireBGCv2 is one of the representative models currently used in the research area of forest landscape changes. It can simulate ecological processes at various scales, including trees scale (tree growth, establishment, and mortality), stand scale (carbon and nitrogen pools, fuel treatment, decomposition), site scale (resource competition and species phenology), and landscape scale (seed dispersal and wildfire disturbances), and the effects of those processes on forest landscape structure and function. The advantage of this model lies in its ability to simulate multiple ecological processes while considering the diversity and complexity of ecosystems. However, it also has drawbacks, such as high computational demands and complexity of use. We summarized the basic principles and structure of FireBGCv2 and introduced its application progress in forest landscape research and management. Currently, the application of the FireBGCv2 model, both domestically and internationally, mainly focused on exploring the interactions between fire, climate, and vegetation, quantifying the spatial and temporal dynamics of fires, and describing potential fire dynamics under future climate scenarios and land management strategies. With the in-depth development of forest landscape model theories and applications, the future prospects of FireBGCv2 include improving and updating the model's algorithms, adding new functional modules to explore fire management issues, and meeting the needs of different users.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 9","pages":"2473-2482"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202409.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Forest landscape model can quantitatively simulate the spatiotemporal variations in forest structure and function at the landscape scale based on traditional field survey data and mathematical models, providing a reference for the formulation of scientific forest management strategies. FireBGCv2 is one of the representative models currently used in the research area of forest landscape changes. It can simulate ecological processes at various scales, including trees scale (tree growth, establishment, and mortality), stand scale (carbon and nitrogen pools, fuel treatment, decomposition), site scale (resource competition and species phenology), and landscape scale (seed dispersal and wildfire disturbances), and the effects of those processes on forest landscape structure and function. The advantage of this model lies in its ability to simulate multiple ecological processes while considering the diversity and complexity of ecosystems. However, it also has drawbacks, such as high computational demands and complexity of use. We summarized the basic principles and structure of FireBGCv2 and introduced its application progress in forest landscape research and management. Currently, the application of the FireBGCv2 model, both domestically and internationally, mainly focused on exploring the interactions between fire, climate, and vegetation, quantifying the spatial and temporal dynamics of fires, and describing potential fire dynamics under future climate scenarios and land management strategies. With the in-depth development of forest landscape model theories and applications, the future prospects of FireBGCv2 include improving and updating the model's algorithms, adding new functional modules to explore fire management issues, and meeting the needs of different users.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
森林景观模型 FireBGCv2 的原理、结构和应用进展。
森林景观模型可以基于传统的野外调查数据和数学模型,定量模拟景观尺度上森林结构和功能的时空变化,为制定科学的森林经营策略提供参考。FireBGCv2 是目前森林景观变化研究领域的代表性模型之一。它可以模拟各种尺度的生态过程,包括树木尺度(树木的生长、成材和死亡)、林分尺度(碳池和氮池、燃料处理、分解)、地点尺度(资源竞争和物种物候)和景观尺度(种子传播和野火干扰),以及这些过程对森林景观结构和功能的影响。该模型的优点在于能够模拟多种生态过程,同时考虑到生态系统的多样性和复杂性。但它也有缺点,如计算要求高和使用复杂。我们总结了 FireBGCv2 的基本原理和结构,并介绍了其在森林景观研究和管理中的应用进展。目前,国内外对FireBGCv2模型的应用主要集中在探索火灾、气候和植被之间的相互作用,量化火灾的时空动态,以及描述未来气候情景和土地管理策略下潜在的火灾动态。随着森林景观模型理论和应用的深入发展,FireBGCv2 的未来前景包括改进和更新模型算法,增加新的功能模块以探讨火灾管理问题,以及满足不同用户的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
期刊最新文献
Effects of simulated precipitation changes on soil respiration:Progress and prospects. Effects of simulated warming on content, fractions and chemical structure of soil organic carbon:Progress and prospects. Application and prospect of landscape ecology in territorial spatial planning. Application of species distribution models in predicting the distribution of marine macrobenthos. Azimuthal and radial variations in sap flow and its effects on the estimation of transpiration for Picea mongolica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1