{"title":"Principle, structure and application progress of the forest landscape model FireBGCv2.","authors":"Jia Song, Hong-Wei Chen, Zhi-Wei Wu, Xue-Bin Sun","doi":"10.13287/j.1001-9332.202409.020","DOIUrl":null,"url":null,"abstract":"<p><p>Forest landscape model can quantitatively simulate the spatiotemporal variations in forest structure and function at the landscape scale based on traditional field survey data and mathematical models, providing a reference for the formulation of scientific forest management strategies. FireBGCv2 is one of the representative models currently used in the research area of forest landscape changes. It can simulate ecological processes at various scales, including trees scale (tree growth, establishment, and mortality), stand scale (carbon and nitrogen pools, fuel treatment, decomposition), site scale (resource competition and species phenology), and landscape scale (seed dispersal and wildfire disturbances), and the effects of those processes on forest landscape structure and function. The advantage of this model lies in its ability to simulate multiple ecological processes while considering the diversity and complexity of ecosystems. However, it also has drawbacks, such as high computational demands and complexity of use. We summarized the basic principles and structure of FireBGCv2 and introduced its application progress in forest landscape research and management. Currently, the application of the FireBGCv2 model, both domestically and internationally, mainly focused on exploring the interactions between fire, climate, and vegetation, quantifying the spatial and temporal dynamics of fires, and describing potential fire dynamics under future climate scenarios and land management strategies. With the in-depth development of forest landscape model theories and applications, the future prospects of FireBGCv2 include improving and updating the model's algorithms, adding new functional modules to explore fire management issues, and meeting the needs of different users.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 9","pages":"2473-2482"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202409.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Forest landscape model can quantitatively simulate the spatiotemporal variations in forest structure and function at the landscape scale based on traditional field survey data and mathematical models, providing a reference for the formulation of scientific forest management strategies. FireBGCv2 is one of the representative models currently used in the research area of forest landscape changes. It can simulate ecological processes at various scales, including trees scale (tree growth, establishment, and mortality), stand scale (carbon and nitrogen pools, fuel treatment, decomposition), site scale (resource competition and species phenology), and landscape scale (seed dispersal and wildfire disturbances), and the effects of those processes on forest landscape structure and function. The advantage of this model lies in its ability to simulate multiple ecological processes while considering the diversity and complexity of ecosystems. However, it also has drawbacks, such as high computational demands and complexity of use. We summarized the basic principles and structure of FireBGCv2 and introduced its application progress in forest landscape research and management. Currently, the application of the FireBGCv2 model, both domestically and internationally, mainly focused on exploring the interactions between fire, climate, and vegetation, quantifying the spatial and temporal dynamics of fires, and describing potential fire dynamics under future climate scenarios and land management strategies. With the in-depth development of forest landscape model theories and applications, the future prospects of FireBGCv2 include improving and updating the model's algorithms, adding new functional modules to explore fire management issues, and meeting the needs of different users.