Artificial intelligence and big data integration in anterior segment imaging for glaucoma.

IF 1 Q4 OPHTHALMOLOGY Taiwan Journal of Ophthalmology Pub Date : 2024-09-13 eCollection Date: 2024-07-01 DOI:10.4103/tjo.TJO-D-24-00053
Sunee Chansangpetch, Mantapond Ittarat, Wisit Cheungpasitporn, Shan C Lin
{"title":"Artificial intelligence and big data integration in anterior segment imaging for glaucoma.","authors":"Sunee Chansangpetch, Mantapond Ittarat, Wisit Cheungpasitporn, Shan C Lin","doi":"10.4103/tjo.TJO-D-24-00053","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) and big data in anterior segment (AS) imaging represents a transformative approach to glaucoma diagnosis and management. This article explores various AS imaging techniques, such as AS optical coherence tomography, ultrasound biomicroscopy, and goniophotography, highlighting their roles in identifying angle-closure diseases. The review focuses on advancements in AI, including machine learning and deep learning, which enhance image analysis and automate complex processes in glaucoma care, and provides current evidence on the performance and clinical applications of these technologies. In addition, the article discusses the integration of big data, detailing its potential to revolutionize medical imaging by enabling comprehensive data analysis, fostering enhanced clinical decision-making, and facilitating personalized treatment strategies. In this article, we address the challenges of standardizing and integrating diverse data sets and suggest that future collaborations and technological advancements could substantially improve the management and research of glaucoma. This synthesis of current evidence and new technologies emphasizes their clinical relevance, offering insights into their potential to change traditional approaches to glaucoma evaluation and care.</p>","PeriodicalId":44978,"journal":{"name":"Taiwan Journal of Ophthalmology","volume":"14 3","pages":"319-332"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwan Journal of Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjo.TJO-D-24-00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) and big data in anterior segment (AS) imaging represents a transformative approach to glaucoma diagnosis and management. This article explores various AS imaging techniques, such as AS optical coherence tomography, ultrasound biomicroscopy, and goniophotography, highlighting their roles in identifying angle-closure diseases. The review focuses on advancements in AI, including machine learning and deep learning, which enhance image analysis and automate complex processes in glaucoma care, and provides current evidence on the performance and clinical applications of these technologies. In addition, the article discusses the integration of big data, detailing its potential to revolutionize medical imaging by enabling comprehensive data analysis, fostering enhanced clinical decision-making, and facilitating personalized treatment strategies. In this article, we address the challenges of standardizing and integrating diverse data sets and suggest that future collaborations and technological advancements could substantially improve the management and research of glaucoma. This synthesis of current evidence and new technologies emphasizes their clinical relevance, offering insights into their potential to change traditional approaches to glaucoma evaluation and care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青光眼前节成像中的人工智能和大数据整合。
人工智能(AI)和大数据在眼前节(AS)成像中的整合代表了一种变革性的青光眼诊断和管理方法。本文探讨了各种青光眼成像技术,如青光眼光学相干断层扫描、超声生物显微镜和测角摄影,强调了它们在识别闭角型青光眼疾病中的作用。综述重点介绍了人工智能的进步,包括机器学习和深度学习,它们增强了图像分析并使青光眼治疗中的复杂过程自动化,还提供了这些技术的性能和临床应用方面的最新证据。此外,文章还讨论了大数据的整合问题,详细介绍了大数据通过实现综合数据分析、促进临床决策和推动个性化治疗策略,为医学成像带来革命性变化的潜力。在这篇文章中,我们探讨了标准化和整合不同数据集所面临的挑战,并提出未来的合作和技术进步将大大改善青光眼的管理和研究。这篇对当前证据和新技术的综述强调了它们的临床相关性,并深入探讨了它们改变传统青光眼评估和治疗方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
9.10%
发文量
68
审稿时长
19 weeks
期刊最新文献
Advancing glaucoma care with big data and artificial intelligence innovations. Application of artificial intelligence in glaucoma care: An updated review. Artificial intelligence and big data integration in anterior segment imaging for glaucoma. Big data and electronic health records for glaucoma research. Big data for imaging assessment in glaucoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1