Optimal survival analyses with prevalent and incident patients.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2024-10-12 DOI:10.1007/s10985-024-09639-6
Nicholas Hartman
{"title":"Optimal survival analyses with prevalent and incident patients.","authors":"Nicholas Hartman","doi":"10.1007/s10985-024-09639-6","DOIUrl":null,"url":null,"abstract":"<p><p>Period-prevalent cohorts are often used for their cost-saving potential in epidemiological studies of survival outcomes. Under this design, prevalent patients allow for evaluations of long-term survival outcomes without the need for long follow-up, whereas incident patients allow for evaluations of short-term survival outcomes without the issue of left-truncation. In most period-prevalent survival analyses from the existing literature, patients have been recruited to achieve an overall sample size, with little attention given to the relative frequencies of prevalent and incident patients and their statistical implications. Furthermore, there are no existing methods available to rigorously quantify the impact of these relative frequencies on estimation and inference and incorporate this information into study design strategies. To address these gaps, we develop an approach to identify the optimal mix of prevalent and incident patients that maximizes precision over the entire estimated survival curve, subject to a flexible weighting scheme. In addition, we prove that inference based on the weighted log-rank test or Cox proportional hazards model is most powerful with an entirely prevalent or incident cohort, and we derive theoretical formulas to determine the optimal choice. Simulations confirm the validity of the proposed optimization criteria and show that substantial efficiency gains can be achieved by recruiting the optimal mix of prevalent and incident patients. The proposed methods are applied to assess waitlist outcomes among kidney transplant candidates.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09639-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Period-prevalent cohorts are often used for their cost-saving potential in epidemiological studies of survival outcomes. Under this design, prevalent patients allow for evaluations of long-term survival outcomes without the need for long follow-up, whereas incident patients allow for evaluations of short-term survival outcomes without the issue of left-truncation. In most period-prevalent survival analyses from the existing literature, patients have been recruited to achieve an overall sample size, with little attention given to the relative frequencies of prevalent and incident patients and their statistical implications. Furthermore, there are no existing methods available to rigorously quantify the impact of these relative frequencies on estimation and inference and incorporate this information into study design strategies. To address these gaps, we develop an approach to identify the optimal mix of prevalent and incident patients that maximizes precision over the entire estimated survival curve, subject to a flexible weighting scheme. In addition, we prove that inference based on the weighted log-rank test or Cox proportional hazards model is most powerful with an entirely prevalent or incident cohort, and we derive theoretical formulas to determine the optimal choice. Simulations confirm the validity of the proposed optimization criteria and show that substantial efficiency gains can be achieved by recruiting the optimal mix of prevalent and incident patients. The proposed methods are applied to assess waitlist outcomes among kidney transplant candidates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流行病患者和事故患者的最佳生存分析。
在生存结果的流行病学研究中,周期流行组群因其节省成本的潜力而经常被使用。在这种设计下,流行期患者可用于评估长期生存结果,而无需长期随访,而事件期患者可用于评估短期生存结果,而无需考虑左截断的问题。在现有文献中的大多数时期流行生存分析中,招募患者都是为了达到总体样本量,而很少关注流行患者和事件患者的相对频率及其对统计的影响。此外,也没有现成的方法来严格量化这些相对频率对估计和推断的影响,并将这些信息纳入研究设计策略中。为了弥补这些不足,我们开发了一种方法来确定流行患者和事件患者的最佳组合,从而在灵活的加权方案下最大限度地提高整个估计生存曲线的精确度。此外,我们还证明了基于加权对数秩检验或 Cox 比例危险度模型的推论在完全流行或事件队列的情况下最为有效,并推导出理论公式来确定最佳选择。模拟证实了所提出的优化标准的有效性,并表明通过招募流行病患者和事件患者的最佳组合,可以大大提高效率。建议的方法被应用于评估肾移植候选者的候选结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Conditional modeling of recurrent event data with terminal event. Optimal survival analyses with prevalent and incident patients. A flexible time-varying coefficient rate model for panel count data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1