Georgina Benn, Christian Bortolini, David M Roberts, Alice L B Pyne, Séamus Holden, Bart W Hoogenboom
{"title":"Complement-mediated killing of Escherichia coli by mechanical destabilization of the cell envelope.","authors":"Georgina Benn, Christian Bortolini, David M Roberts, Alice L B Pyne, Séamus Holden, Bart W Hoogenboom","doi":"10.1038/s44318-024-00266-3","DOIUrl":null,"url":null,"abstract":"<p><p>Complement proteins eliminate Gram-negative bacteria in the blood via the formation of membrane attack complex (MAC) pores in the outer membrane. However, it remains unclear how outer membrane poration leads to inner membrane permeation and cell lysis. Using atomic force microscopy (AFM) on living Escherichia coli (E. coli), we probed MAC-induced changes in the cell envelope and correlated these with subsequent cell death. Initially, bacteria survived despite the formation of hundreds of MACs that were randomly distributed over the cell surface. This was followed by larger-scale disruption of the outer membrane, including propagating defects and fractures, and by an overall swelling and stiffening of the bacterial surface, which precede inner membrane permeation. We conclude that bacterial cell lysis is only an indirect effect of MAC formation; outer membrane poration leads to mechanical destabilization of the cell envelope, reducing its ability to contain the turgor pressure, leading to inner membrane permeation and cell death.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"6152-6160"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00266-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Complement proteins eliminate Gram-negative bacteria in the blood via the formation of membrane attack complex (MAC) pores in the outer membrane. However, it remains unclear how outer membrane poration leads to inner membrane permeation and cell lysis. Using atomic force microscopy (AFM) on living Escherichia coli (E. coli), we probed MAC-induced changes in the cell envelope and correlated these with subsequent cell death. Initially, bacteria survived despite the formation of hundreds of MACs that were randomly distributed over the cell surface. This was followed by larger-scale disruption of the outer membrane, including propagating defects and fractures, and by an overall swelling and stiffening of the bacterial surface, which precede inner membrane permeation. We conclude that bacterial cell lysis is only an indirect effect of MAC formation; outer membrane poration leads to mechanical destabilization of the cell envelope, reducing its ability to contain the turgor pressure, leading to inner membrane permeation and cell death.
补体蛋白通过在外膜上形成膜攻击复合体(MAC)孔来消灭血液中的革兰氏阴性细菌。然而,目前仍不清楚外膜孔是如何导致内膜渗透和细胞裂解的。我们在活体大肠杆菌(E. coli)上使用原子力显微镜(AFM)探测了 MAC 诱导的细胞包膜变化,并将这些变化与随后的细胞死亡联系起来。最初,尽管形成了数百个随机分布在细胞表面的 MAC,细菌仍能存活。随后是更大规模的外膜破坏,包括扩展性缺损和断裂,以及细菌表面的整体肿胀和硬化,这些都发生在内膜渗透之前。我们的结论是,细菌细胞溶解只是 MAC 形成的间接影响;外膜孔化会导致细胞包膜的机械不稳定性,降低其抑制湍压力的能力,从而导致内膜渗透和细胞死亡。
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.