{"title":"Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.","authors":"Pavithra Rajaram, Mohanapriya Marimuthu","doi":"10.1080/0954898X.2024.2412679","DOIUrl":null,"url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2412679","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.