LS-Net: lightweight segmentation network for dermatological epidermal segmentation in optical coherence tomography imaging.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-09-06 eCollection Date: 2024-10-01 DOI:10.1364/BOE.529662
Jinpeng Liao, Tianyu Zhang, Chunhui Li, Zhihong Huang
{"title":"LS-Net: lightweight segmentation network for dermatological epidermal segmentation in optical coherence tomography imaging.","authors":"Jinpeng Liao, Tianyu Zhang, Chunhui Li, Zhihong Huang","doi":"10.1364/BOE.529662","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) can be an important tool for non-invasive dermatological evaluation, providing useful data on epidermal integrity for diagnosing skin diseases. Despite its benefits, OCT's utility is limited by the challenges of accurate, fast epidermal segmentation due to the skin morphological diversity. To address this, we introduce a lightweight segmentation network (LS-Net), a novel deep learning model that combines the robust local feature extraction abilities of Convolution Neural Network and the long-term information processing capabilities of Vision Transformer. LS-Net has a depth-wise convolutional transformer for enhanced spatial contextualization and a squeeze-and-excitation block for feature recalibration, ensuring precise segmentation while maintaining computational efficiency. Our network outperforms existing methods, demonstrating high segmentation accuracy (mean Dice: 0.9624 and mean IoU: 0.9468) with significantly reduced computational demands (floating point operations: 1.131 G). We further validate LS-Net on our acquired dataset, showing its effectiveness in various skin sites (e.g., face, palm) under realistic clinical conditions. This model promises to enhance the diagnostic capabilities of OCT, making it a valuable tool for dermatological practice.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5723-5738"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.529662","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical coherence tomography (OCT) can be an important tool for non-invasive dermatological evaluation, providing useful data on epidermal integrity for diagnosing skin diseases. Despite its benefits, OCT's utility is limited by the challenges of accurate, fast epidermal segmentation due to the skin morphological diversity. To address this, we introduce a lightweight segmentation network (LS-Net), a novel deep learning model that combines the robust local feature extraction abilities of Convolution Neural Network and the long-term information processing capabilities of Vision Transformer. LS-Net has a depth-wise convolutional transformer for enhanced spatial contextualization and a squeeze-and-excitation block for feature recalibration, ensuring precise segmentation while maintaining computational efficiency. Our network outperforms existing methods, demonstrating high segmentation accuracy (mean Dice: 0.9624 and mean IoU: 0.9468) with significantly reduced computational demands (floating point operations: 1.131 G). We further validate LS-Net on our acquired dataset, showing its effectiveness in various skin sites (e.g., face, palm) under realistic clinical conditions. This model promises to enhance the diagnostic capabilities of OCT, making it a valuable tool for dermatological practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LS-Net:用于光学相干断层成像中皮肤表皮分割的轻量级分割网络。
光学相干断层扫描(OCT)是一种非侵入性皮肤病评估的重要工具,可为诊断皮肤病提供有关表皮完整性的有用数据。尽管光学相干断层扫描具有诸多优点,但由于皮肤形态的多样性,它在准确、快速地分割表皮方面所面临的挑战限制了它的实用性。为解决这一问题,我们引入了轻量级分割网络(LS-Net),这是一种新型深度学习模型,结合了卷积神经网络的稳健局部特征提取能力和视觉转换器的长期信息处理能力。LS-Net 有一个深度卷积变换器,用于增强空间上下文关联,还有一个挤压-激发块,用于特征重新校准,确保精确分割的同时保持计算效率。我们的网络优于现有的方法,显示出较高的分割精度(平均 Dice:0.9624,平均 IoU:0.9468),同时显著降低了计算需求(浮点运算:1.131 G)。我们在获得的数据集上进一步验证了 LS-Net,显示了它在现实临床条件下对不同皮肤部位(如面部、手掌)的有效性。该模型有望提高 OCT 的诊断能力,使其成为皮肤科实践中的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors. Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography. On bench evaluation of intraocular lenses: performance of a commercial interferometer. Predictive coding compressive sensing optical coherence tomography hardware implementation. Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1