Small Strain Stiffness of Sand‐Rubber Mixtures With Particle Size Disparity Effect

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL International Journal for Numerical and Analytical Methods in Geomechanics Pub Date : 2024-10-21 DOI:10.1002/nag.3866
Deyun Liu, Zhen‐Yu Yin
{"title":"Small Strain Stiffness of Sand‐Rubber Mixtures With Particle Size Disparity Effect","authors":"Deyun Liu, Zhen‐Yu Yin","doi":"10.1002/nag.3866","DOIUrl":null,"url":null,"abstract":"This study systematically investigates the small‐strain stiffness of sand‐rubber mixtures, focusing on combined particle disparity—both larger sand with smaller rubber and smaller sand with larger rubber—using the discrete element method. The effectiveness of various state variables in capturing stiffness behavior across different rubber contents and size disparities (SDs) is evaluated. Conventional state variables developed for natural sands, such as void ratio and mechanical void ratio were found to be less effective in describing the small‐strain stiffness characteristics of sand‐rubber mixtures due to distinct properties of rubber. This study then demonstrates that the stiffness contribution of rubber materials could be negligible, emphasizing that particle property disparity is more significant than SD between sand and rubber materials. Therefore, an adapted state variable, considering only active sand particles, shows improved performance for capturing the correlation between small‐strain stiffness with increasing rubber contents, suggesting its potential utility over conventional variables. Additionally, a refined void ratio, including inactive sand particles but excluding rubber, offers a practical alternative for capturing small‐strain stiffness in experimental and engineering practices, aligning with previous experimental observations. These findings underscore the need for developing more effective state variables that accurately reflect the interactions within heterogeneous materials like sand‐rubber mixtures.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"86 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3866","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the small‐strain stiffness of sand‐rubber mixtures, focusing on combined particle disparity—both larger sand with smaller rubber and smaller sand with larger rubber—using the discrete element method. The effectiveness of various state variables in capturing stiffness behavior across different rubber contents and size disparities (SDs) is evaluated. Conventional state variables developed for natural sands, such as void ratio and mechanical void ratio were found to be less effective in describing the small‐strain stiffness characteristics of sand‐rubber mixtures due to distinct properties of rubber. This study then demonstrates that the stiffness contribution of rubber materials could be negligible, emphasizing that particle property disparity is more significant than SD between sand and rubber materials. Therefore, an adapted state variable, considering only active sand particles, shows improved performance for capturing the correlation between small‐strain stiffness with increasing rubber contents, suggesting its potential utility over conventional variables. Additionally, a refined void ratio, including inactive sand particles but excluding rubber, offers a practical alternative for capturing small‐strain stiffness in experimental and engineering practices, aligning with previous experimental observations. These findings underscore the need for developing more effective state variables that accurately reflect the interactions within heterogeneous materials like sand‐rubber mixtures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有粒度差异效应的砂橡胶混合物的小应变刚度
本研究采用离散元方法,系统地研究了砂橡胶混合物的小应变刚度,重点是组合颗粒差异--较大的砂与较小的橡胶,以及较小的砂与较大的橡胶--。评估了各种状态变量在捕捉不同橡胶含量和粒度差异(SDs)的刚度行为方面的有效性。由于橡胶的不同特性,为天然砂开发的传统状态变量(如空隙率和机械空隙率)在描述砂橡胶混合物的小应变刚度特性时效果较差。因此,本研究证明橡胶材料对刚度的贡献可以忽略不计,并强调砂和橡胶材料之间的颗粒属性差异比 SD 更为显著。因此,只考虑活性砂颗粒的调整状态变量在捕捉小应变刚度与橡胶含量增加之间的相关性方面表现出更好的性能,这表明它比传统变量具有潜在的实用性。此外,细化的空隙率(包括非活性砂粒但不包括橡胶)为在实验和工程实践中捕捉小应变刚度提供了一种实用的替代方法,与之前的实验观察结果一致。这些发现突出表明,需要开发更有效的状态变量,以准确反映砂橡胶混合物等异质材料内部的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
期刊最新文献
A POD‐TANN Approach for the Multiscale Modeling of Materials and Macro‐Element Derivation in Geomechanics Adaptive Mesh Generation and Numerical Verification for Complex Rock Structures Based on Optimization and Iteration Algorithms Issue Information Analysis of Fracturing Above Block Caving Back: A Spherical Shell Theory Approach and BEM Numerical Simulation Data‐Driven Tools to Evaluate Support Pressure, Radial Displacements, and Face Extrusion for Tunnels Excavated in Elastoplastic Grounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1